Statistical complexity and Fisher–Shannon information measure of H+2

Using the simple Coulson molecular wave function for the ground state H + 2 molecule as a function of internuclear distance, the first molecular calculations of (a) the statistical complexity measure due to Lopez-Ruiz, Mancini, and Calbet and (b) the Fisher-Shannon information measure in the position and momentum spaces are reported. It is found that the two measures exhibit the molecular bonding in the form of a characteristic minimum around the equilibrium internuclear distance in the product space.

[1]  Á. Nagy,et al.  Atomic Fisher information versus atomic number , 2006 .

[2]  B. Frieden Science from Fisher Information , 2004 .

[3]  J. C. Angulo,et al.  Atomic quantum similarity indices in position and momentum spaces. , 2007, The Journal of chemical physics.

[4]  Marcel Reginatto,et al.  Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information , 1998 .

[5]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Michael J. W. Hall,et al.  Universal geometric approach to uncertainty, entropy, and information , 1999 .

[7]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[8]  Takuya Yamano,et al.  A statistical complexity measure with nonextensive entropy and quasi-multiplicativity , 2004 .

[9]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[10]  Jesús S. Dehesa,et al.  The Fisher information of single-particle systems with a central potential , 2005 .

[11]  D. M. Bishop Ab Initio Calculations of Harmonic Force Constants. III. An Exact Calculation of the H2+ Force Constant , 1970 .

[12]  Fahrettin Gogtas,et al.  Time-dependent quantum study of the kinetics of the O(3P) + CN(X2+) → CO(X1+) + N(2D) reaction , 2006 .

[13]  Ricardo López-Ruiz,et al.  A Statistical Measure of Complexity , 1995, ArXiv.

[14]  Ágnes Nagy,et al.  Fisher information in density functional theory , 2003 .

[15]  Ricardo López-Ruiz,et al.  Features of the extension of a statistical measure of complexity to continuous systems. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  C. P. Panos,et al.  Comparison of SDL and LMC measures of complexity: Atoms as a testbed , 2007 .

[17]  Shubin Liu,et al.  On the relationship between densities of Shannon entropy and Fisher information for atoms and molecules. , 2007, The Journal of chemical physics.

[18]  J. S. Dehesa,et al.  The Fisher-Shannon information plane, an electron correlation tool. , 2004, The Journal of chemical physics.

[19]  J. S. Dehesa,et al.  Information-theoretic measures of hyperspherical harmonics , 2007 .

[20]  Á. Nagy,et al.  Phase-space Fisher information , 2007 .

[21]  Net Fisher information measure versus ionization potential and dipole polarizability in atoms , 2006, quant-ph/0610129.

[22]  K Ch Chatzisavvas,et al.  Information entropy, information distances, and complexity in atoms. , 2005, The Journal of chemical physics.

[23]  Á. Nagy Fisher information in a two-electron entangled artificial atom , 2006 .

[24]  P. T. Landsberg,et al.  Can entropy and order increase together , 1984 .

[25]  Robert A Gatenby,et al.  Information Theory in Living Systems, Methods, Applications, and Challenges , 2007, Bulletin of mathematical biology.

[26]  P. Geerlings,et al.  Quantum similarity study of atomic density functions: insights from information theory and the role of relativistic effects. , 2007, The Journal of chemical physics.

[27]  Ramon Carbo,et al.  How similar is a molecule to another? An electron density measure of similarity between two molecular structures , 1980 .

[28]  P. Landsberg,et al.  Simple measure for complexity , 1999 .

[29]  Roman F. Nalewajski,et al.  Information principles in the theory of electronic structure , 2003 .

[30]  A. Hyman,et al.  Interrelations among x-ray scattering, electron densities, and ionization potentials , 1978 .

[31]  R. Parr,et al.  On the Quantum‐Mechanical Kinetic Energy as a Measure of the Information in a Distribution , 1980 .

[32]  Flavia Pennini,et al.  Localization estimation and global vs. local information measures , 2007 .

[33]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[34]  P. Geerlings,et al.  Complexity of Dirac–Fock atom increases with atomic number , 2007 .