Multiresolution stochastic models, data fusion, and wavelet transforms

Abstract In this paper we describe and analyze a class of multiscale stochastic processes which are modeled using dynamic representations evolving in scale based on the wavelet transform. The statistical structure of these models is Markovian in scale, and in addition the eigenstructure of these models is given by the wavelet transform. The implication of this is that by using the wavelet transform we can convert the apparently complicated problem of fusing noisy measurements of our process at several different resolutions into a set of decoupled, standard recursive estimation problems in which scale plays the role of the time-like variable. In addition we show how the wavelet transform, which is defined for signals that extend from −∞ to +∞, can be adapted to yield a modified transform matched to the eigenstructure of our multiscale stochastic models over finite intervals. Finally, we illustrate the promise of this methodology by applying it to estimation problems, involving single and multi-scale data, for a first-order Gauss-Markov process. As we show, while this process is not precisely in the class we define, it can be well-approximated by our models, leading to new, highly parallel and scale-recursive estimation algorithms for multi-scale data fusion. In addition our framework extends immediately to 2D signals where the computational benefits are even more significant.

[1]  Patrick Flandrin,et al.  On the spectrum of fractional Brownian motions , 1989, IEEE Trans. Inf. Theory.

[2]  K. C. Chou,et al.  Recursive and iterative estimation algorithms for multiresolution stochastic processes , 1989, Proceedings of the 28th IEEE Conference on Decision and Control,.

[3]  L. Morris,et al.  A comparative study of time efficient FFT and WFTA programs for general purpose computers , 1978 .

[4]  L. Robert Morris,et al.  Automatic generation of time efficient digital signal processing software , 1976, ICASSP.

[5]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[6]  P. Duhamel,et al.  `Split radix' FFT algorithm , 1984 .

[7]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[8]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[9]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[10]  R. Coifman,et al.  Fast wavelet transforms and numerical algorithms I , 1991 .

[11]  Stuart A. Golden,et al.  Identifying multiscale statistical models using the wavelet transform , 1991 .

[12]  Gregory W. Wornell,et al.  Estimation of fractal signals from noisy measurements using wavelets , 1992, IEEE Trans. Signal Process..

[13]  G. Bruun z-transform DFT filters and FFT's , 1978 .

[14]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[16]  Wen-Hsiung Chen,et al.  A Fast Computational Algorithm for the Discrete Cosine Transform , 1977, IEEE Trans. Commun..

[17]  Michèle Basseville,et al.  Multiscale autoregressive processes. II. Lattice structures for whitening and modeling , 1992, IEEE Trans. Signal Process..

[18]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[19]  M. J. Narasimha,et al.  On the Computation of the Discrete Cosine Transform , 1978, IEEE Trans. Commun..

[20]  R. Yavne,et al.  An economical method for calculating the discrete Fourier transform , 1899, AFIPS Fall Joint Computing Conference.

[21]  C. Rader,et al.  A new principle for fast Fourier transformation , 1976 .

[22]  Mark J. T. Smith,et al.  Exact reconstruction techniques for tree-structured subband coders , 1986, IEEE Trans. Acoust. Speech Signal Process..

[23]  Alan S. Willsky,et al.  Modeling and estimation of multiscale stochastic processes , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[24]  Stéphane Mallat,et al.  Multifrequency channel decompositions of images and wavelet models , 1989, IEEE Trans. Acoust. Speech Signal Process..

[25]  S. Krantz Fractal geometry , 1989 .

[26]  P PentlandAlex Fractal-Based Description of Natural Scenes , 1984 .

[27]  Matthew K. Fang,et al.  I I I , 1986 .

[28]  Gregory W. Wornell,et al.  A Karhunen-Loève-like expansion for 1/f processes via wavelets , 1990, IEEE Trans. Inf. Theory.

[29]  T. Parks,et al.  A prime factor FFT algorithm using high-speed convolution , 1977 .

[30]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[31]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[32]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[33]  H. Nussbaumer Fast Fourier transform and convolution algorithms , 1981 .

[34]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[35]  Michèle Basseville,et al.  Modeling and estimation of multiresolution stochastic processes , 1992, IEEE Trans. Inf. Theory.

[36]  Alan R. Jones,et al.  Fast Fourier Transform , 1970, SIGP.

[37]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[38]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[39]  R. Singleton An algorithm for computing the mixed radix fast Fourier transform , 1969 .

[40]  R. Preuss,et al.  Very fast computation of the radix-2 discrete Fourier transform , 1982 .

[41]  P. Gács,et al.  Algorithms , 1992 .

[42]  H. Nawab,et al.  Corrections to "Bounds on the minimum number of data transfers in WFTA and FFT programs" , 1980 .

[43]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Bobby R. Hunt,et al.  The discrete cosine transform-A new version , 1983, ICASSP.

[45]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .