Industrial Applications of Simulation Studies in Solid State Chemistry

Abstract This paper gives an account of some recent applications of computer simulation techniques to materials of industrial importance. The methodology used is fully discussed, and applications to zeolites, high Tc superconductors, superionic conductors and mantle-forming minerals are described.

[1]  C. Catlow,et al.  Structure prediction of transition‐metal oxides using energy‐minimization techniques , 1984 .

[2]  N. H. March,et al.  Collective effects in solids and liquids , 1982 .

[3]  C. R. A. Catlow,et al.  Computer simulation of solids , 1982 .

[4]  S. C. Parker,et al.  The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs , 1987 .

[5]  C. Catlow,et al.  Ion transport and interatomic potentials in the alkaline-earth-fluoride crystals , 1977 .

[6]  Edward A. Stern,et al.  Extended x-ray-absorption fine-structure technique. III. Determination of physical parameters , 1975 .

[7]  M. Gillan,et al.  Entropy of a point defect in an ionic crystal , 1983 .

[8]  S. C. Parker,et al.  The energetics of polytypic structures: a computer simulation of magnesium silicate spinelloids , 1985 .

[9]  A. W. Overhauser,et al.  Theory of the Dielectric Constants of Alkali Halide Crystals , 1958 .

[10]  M. Islam,et al.  Hole-pairing mechanisms in La2CuO4 , 1988 .

[11]  The calculation of free energies of point defects in ionic crystals , 1985 .

[12]  C. R. A. Catlow,et al.  Interatomic potentials for SiO2 , 1984 .

[13]  C. Catlow,et al.  A new hybrid scheme of computer simulation based on Hades and Monte Carlo: Application to ionic conductivity in Y3+ doped CeO2 , 1986 .

[14]  C. Catlow,et al.  Computer Simulation Studies of Zeolite Structure , 1988 .

[15]  A. M. Stoneham,et al.  Vibrational entropies of defects in solids , 1981 .

[16]  S. C. Parker,et al.  Structure prediction of silicate minerals using energy-minimization techniques , 1984 .

[17]  S. C. Parker,et al.  A study of the structures and energetics of magnesium silicates , 1985 .

[18]  H. Müller-Buschbaum,et al.  Über Oxocuprate. XV Zur Kristallstruktur von Seltenerdmetalloxocupraten: La2CuO4, Gd2CuO4 , 1977 .

[19]  G. B. Suffritti,et al.  Lattice-dynamical applications to crystallographic problems: consideration of the Brillouin zone sampling , 1976 .

[20]  P. Hagenmuller,et al.  The cubo-octahedral cluster in the fluorite-type lattice: A theoretical approach , 1984 .

[21]  C. Catlow,et al.  Interionic potentials for alkali halides , 1977 .

[22]  Chen,et al.  Soft-phonon behavior and transport in single-crystal La2CuO , 1987, Physical review letters.

[23]  Freeman,et al.  Electronically driven instabilities and superconductivity in the layered La2-xBaxCuO4 perovskites. , 1987, Physical review letters.

[24]  P. Hagenmuller,et al.  Etude par diffraction neutronique des solutions solides K1−xBixF1+2xetRb1−xBixF1+2x , 1982 .

[25]  C. Catlow,et al.  Computer modelling of silicates , 1987 .

[26]  川田 薫 The system Mg2SiO4-Fe2SiO4 at high pressures and temperatures and the earth's interior , 1978 .

[27]  C. Catlow COMPUTER SIMULATION STUDIES OF TRANSPORT IN SOLIDS , 1986 .

[28]  M. Islam,et al.  Computer modelling studies of defects and valence states in La2CuO4 , 1988 .

[29]  Marvin L. Cohen,et al.  Special Points in the Brillouin Zone , 1973 .

[30]  John H. Harding,et al.  The calculation of defect parameters in UO2 , 1986 .

[31]  J. R. Walker Molecular dynamics simulations of crystalline ionic materials , 1984 .