Multi-source K-nearest neighbor, Mean Balanced forest inventory of Georgia

We describe here a case study in compiling a high-resolution forest inventory for central Georgia using the K-nearest neighbor approach with multi-source data and Mean Balancing correction for the estimation bias. In general, multi-source data collected through various incompatible designs cannot be mixed due to intractable variances and unknown bias. Because of this incompatibility abundant information about the environment (i.e. atmospheric conditions, soil composition, spatio-temporal data from nearly 40 years of satellite imaging, and a wealth of site specific studies with sampling for various growth attributes) frequently cannot be used to produce new unbiased estimates for the variables and areas of interest. This study was carried out in central Georgia, and the k-NN approach was used to fuse together various incompatible data from public and private sources. We used the Mean Balancing approach to remove the bias resulting from this data fusion. The result of the study is a derivation of an unbiased high-resolution forest inventory, which can be used for small area's fiber supply assessment analysis.

[1]  Guido van Rossum,et al.  An Introduction to Python , 2003 .

[2]  Jennifer L. Dungan,et al.  Seasonal LAI in slash pine estimated with landsat TM , 1992 .

[3]  Jin Chen,et al.  A new geostatistical approach for filling gaps in Landsat ETM+ SLC-off images , 2012 .

[4]  G. L. Schmidt,et al.  A multi‐scale segmentation approach to filling gaps in Landsat ETM+ SLC‐off images , 2007 .

[5]  G. E. Dixon Essential FVS: A User's Guide to the Forest Vegetation Simulator , 2007 .

[6]  Karin S. Fassnacht,et al.  Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites , 1999 .

[7]  Feng Gao,et al.  A simple and effective method for filling gaps in Landsat ETM+ SLC-off images , 2011 .

[8]  Erik Næsset,et al.  Using remotely sensed data to construct and assess forest attribute maps and related spatial products , 2010 .

[9]  M. D. Nelson,et al.  Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information , 2008 .

[10]  M. Nilsson,et al.  Countrywide Estimates of Forest Variables Using Satellite Data and Field Data from the National Forest Inventory , 2003, Ambio.

[11]  M. Bauer,et al.  Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method , 2001 .

[12]  Raghavan Srinivasan,et al.  Estimation of managed loblolly pine stand age and density with Landsat ETM+ data , 2006 .

[13]  Kim Iles,et al.  Nearest Neighbor Bias - A simple example , 2010, Math. Comput. For. Nat. Resour. Sci..

[14]  M. Madden,et al.  Large area forest inventory using Landsat ETM+: A geostatistical approach , 2009 .

[15]  J. Chen,et al.  Retrieving Leaf Area Index of Boreal Conifer Forests Using Landsat TM Images , 1996 .

[16]  Jiyuan Liu,et al.  Characterization of forest types in Northeastern China, using multi-temporal SPOT-4 VEGETATION sensor data , 2002 .

[17]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .

[18]  M. Nilsson,et al.  Combining national forest inventory field plots and remote sensing data for forest databases , 2008 .

[19]  M. Zasada,et al.  Proof of Concept for an Approach to a Finer Resolution Inventory , 2009 .

[20]  Collin G. Homer,et al.  Automated cloud and shadow detection and filling using two-date Landsat imagery in the USA , 2013 .

[21]  Ronald E. McRoberts,et al.  Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique , 2002 .

[22]  R. Fournier,et al.  A comparison of four methods to map biomass from Landsat-TM and inventory data in western Newfoundland , 2006 .

[23]  Arnt Kristian Gjertsen,et al.  Accuracy of forest mapping based on Landsat TM data and a kNN-based method , 2007 .

[24]  C. Goulding,et al.  Estimation of timber volume in a coniferous plantation forest using Landsat TM , 1997 .

[25]  M. Gillis Canada's National Forest Inventory (Responding to Current Information Needs) , 2001, Environmental monitoring and assessment.

[26]  Ronald E. McRoberts,et al.  Diagnostic tools for nearest neighbors techniques when used with satellite imagery , 2009 .

[27]  S. Sader,et al.  Detection of forest harvest type using multiple dates of Landsat TM imagery , 2002 .

[28]  Curtis E. Woodcock,et al.  Monitoring large areas for forest change using Landsat: Generalization across space, time and Landsat sensors , 2001 .

[29]  R. McRoberts,et al.  Remote sensing support for national forest inventories , 2007 .

[30]  W. Walker,et al.  An empirical InSAR-optical fusion approach to mapping vegetation canopy height , 2007 .

[31]  Marguerite Madden,et al.  A linear mixed-effects model of biomass and volume of trees using Landsat ETM+ images , 2007 .

[32]  Göran Ståhl,et al.  Harmonizing national forest inventories. , 2009 .

[33]  William R. Wykoff,et al.  Supplement to The User's Guide for The Stand Prognosis Model-version 5.0 , 1986 .

[34]  Robert B. Waide,et al.  Tropical forest biomass and successional age class relationships to a vegetation index derived from Landsat TM data , 1989 .

[35]  S. Howard,et al.  An Evaluation of Gap-Filled Landsat SLC-Off Imagery for Wildland Fire Burn Severity Mapping , 2004 .

[36]  Ronald E. McRoberts,et al.  Estimating forest attribute parameters for small areas using nearest neighbors techniques , 2012 .

[37]  P. Deusen Carbon sequestration potential of forest land: Management for products and bioenergy versus preservation , 2010 .

[38]  John A. Scrivani,et al.  Landsat TM-Based Forest Area Estimation Using Iterative Guided Spectral Class Rejection , 2001 .

[39]  Kim Iles,et al.  "Total-Balancing" an inventory: A method for unbiased inventories using highly biased non-sample data at variable scales , 2009, Math. Comput. For. Nat. Resour. Sci..

[40]  A. Pekkarinen,et al.  Segment-level stand inventory for forest management , 2005 .

[41]  Marguerite Madden,et al.  Closest Spectral Fit for Removing Clouds and Cloud Shadows , 2009 .

[42]  Scott Mitchell,et al.  Integration of forest inventory and satellite imagery:: a Canadian status assessment and research issues , 2005 .

[43]  E. Davidson,et al.  Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazônia , 2003 .

[44]  Marta Chiesi,et al.  Integration of multi‐source NDVI data for the estimation of Mediterranean forest productivity , 2006 .

[45]  Correcting Map Errors in Forest Inventory Estimates for Small Areas , 2006 .

[46]  S. Maxwell,et al.  Photogrammetric Engineering & Remote Sensing Filling Landsat Etm+ Slc-off Gaps Using a Segmentation Model Approach Case Study , 2022 .

[47]  G. Reichert,et al.  Evaluation of segment‐based gap‐filled Landsat ETM+ SLC‐off satellite data for land cover classification in southern Saskatchewan, Canada , 2008 .