Axiomatizations of inconsistency indices for triads

Pairwise comparison matrices often exhibit inconsistency, therefore many indices have been suggested to measure their deviation from a consistent matrix. A set of axioms has been proposed recently that is required to be satisfied by any reasonable inconsistency index. This set seems to be not exhaustive as illustrated by an example, hence it is expanded by adding two new properties. All axioms are considered on the set of triads, pairwise comparison matrices with three alternatives, which is the simplest case of inconsistency. We choose the logically independent properties and prove that they characterize, that is, uniquely determine the inconsistency ranking induced by most inconsistency indices that coincide on this restricted domain. Since triads play a prominent role in a number of inconsistency indices, our results can also contribute to the measurement of inconsistency for pairwise comparison matrices with more than three alternatives.

[1]  W. Cook,et al.  Deriving weights from pairwise comparison ratio matrices: An axiomatic approach , 1988 .

[2]  Tamás Rapcsák,et al.  On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices , 2008, J. Glob. Optim..

[3]  Michele Fedrizzi,et al.  A general formulation for some inconsistency indices of pairwise comparisons , 2018, Ann. Oper. Res..

[4]  Jacek Szybowski,et al.  Inconsistency of special cases of pairwise comparisons matrices , 2018, Int. J. Approx. Reason..

[5]  Noel Bryson,et al.  A Goal Programming Method for Generating Priority Vectors , 1995 .

[6]  Waldemar W. Koczkodaj,et al.  On Axiomatization of Inconsistency Indicators in Pairwise Comparisons , 2013, Int. J. Approx. Reason..

[7]  Matteo Brunelli,et al.  Recent Advances on Inconsistency Indices for Pairwise Comparisons - A Commentary , 2015, Fundam. Informaticae.

[8]  Dóra Gréta Petróczy An alternative quality of life ranking on the basis of remittances , 2018, 1809.03977.

[9]  Michele Fedrizzi,et al.  Inconsistency indices for pairwise comparison matrices: a numerical study , 2013, Annals of Operations Research.

[10]  Gang Kou,et al.  A cosine maximization method for the priority vector derivation in AHP , 2014, Eur. J. Oper. Res..

[11]  R. Hämäläinen,et al.  Preference programming through approximate ratio comparisons , 1995 .

[12]  Thomas L. Saaty,et al.  Multicriteria Decision Making: The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation , 1990 .

[13]  José María Moreno-Jiménez,et al.  The geometric consistency index: Approximated thresholds , 2003, Eur. J. Oper. Res..

[14]  Bice Cavallo,et al.  Functional relations and Spearman correlation between consistency indices , 2020, J. Oper. Res. Soc..

[15]  J. Barzilai Consistency Measures for Pairwise Comparison Matrices , 1998 .

[16]  W. W. Koczkodaj A new definition of consistency of pairwise comparisons , 1993 .

[17]  Adrian Satja Kurdija,et al.  A universal voting system based on the Potential Method , 2017, Eur. J. Oper. Res..

[18]  Michele Fedrizzi,et al.  Axiomatic properties of inconsistency indices for pairwise comparisons , 2013, J. Oper. Res. Soc..

[19]  László Csató,et al.  An application of incomplete pairwise comparison matrices for ranking top tennis players , 2014, Eur. J. Oper. Res..

[20]  P. Moran On the method of paired comparisons. , 1947, Biometrika.

[21]  M. T. Lamata,et al.  A new measure of consistency for positive reciprocal matrices , 2003 .

[22]  Konrad Kulakowski,et al.  The New Triad based Inconsistency Indices for Pairwise Comparisons , 2014, KES.

[23]  Matteo Brunelli,et al.  A survey of inconsistency indices for pairwise comparisons , 2018, Int. J. Gen. Syst..

[24]  Michele Fedrizzi,et al.  A chi-square-based inconsistency index for pairwise comparison matrices , 2018, J. Oper. Res. Soc..

[25]  László Csató,et al.  Ranking by pairwise comparisons for Swiss-system tournaments , 2012, Central European Journal of Operations Research.

[26]  Waldemar W. Koczkodaj,et al.  Generalization of a New Definition of Consistency for Pairwise Comparisons , 1994, Inf. Process. Lett..

[27]  J. Barzilai Deriving weights from pairwise comparison matrices , 1997 .

[28]  Yi Peng,et al.  Jie Ke versus AlphaGo: A ranking approach using decision making method for large-scale data with incomplete information , 2018, Eur. J. Oper. Res..

[29]  László Csató,et al.  Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom , 2017, Group Decision and Negotiation.

[30]  J. Fichtner On deriving priority vectors from matrices of pairwise comparisons , 1986 .

[31]  Vitaliy V. Tsyganok,et al.  The (logarithmic) least squares optimality of the arithmetic (geometric) mean of weight vectors calculated from all spanning trees for incomplete additive (multiplicative) pairwise comparison matrices , 2017, Int. J. Gen. Syst..

[32]  László Csató Eigenvector Method and Rank Reversal in Group Decision Making Revisited , 2017, Fundam. Informaticae.

[33]  László Csató,et al.  Characterization of an inconsistency ranking for pairwise comparison matrices , 2016, Ann. Oper. Res..

[34]  R. Hämäläinen,et al.  On the measurement of preferences in the analytic hierarchy process , 1997 .

[35]  Bice Cavallo,et al.  Investigating Properties of the ⊙-Consistency Index , 2012, IPMU.

[36]  D'ora Gr'eta Petr'oczy,et al.  On the monotonicity of the eigenvector method , 2019, Eur. J. Oper. Res..

[37]  L'aszl'o Csat'o,et al.  University rankings from the revealed preferences of the applicants , 2020, Eur. J. Oper. Res..

[38]  T. L. Saaty A Scaling Method for Priorities in Hierarchical Structures , 1977 .

[39]  László Csató,et al.  A characterization of the Logarithmic Least Squares Method , 2017, Eur. J. Oper. Res..

[40]  Matteo Brunelli,et al.  CHARACTERIZING PROPERTIES FOR INCONSISTENCY INDICES IN THE AHP , 2011 .

[41]  László Csató,et al.  On the ranking of a Swiss system chess team tournament , 2015, Ann. Oper. Res..

[42]  J. Barzilai,et al.  Consistent weights for judgements matrices of the relative importance of alternatives , 1987 .

[43]  Matteo Brunelli,et al.  Studying a set of properties of inconsistency indices for pairwise comparisons , 2015, Ann. Oper. Res..