Techno-Economic Analysis of Different Energy Storage Technologies

Overall structure of electrical power system is in the process of changing. For incremental growth, it is moving away from fossil fuels major source of energy in the world today to renewable energy resources that are more environmentally friendly and sustainable [1]. Factors forcing these considerations are (a) the increasing demand for electric power by both developed and developing countries, (b) many developing countries lacking the resources to build power plants and distribution networks, (c) some industrialized countries facing insufficient power generation and (d) greenhouse gas emission and climate change concerns. Renewable energy sources such as wind turbines, photovoltaic solar systems, solar-thermo power, biomass power plants, fuel cells, gas micro-turbines, hydropower turbines, combined heat and power (CHP) micro-turbines and hybrid power systems will be part of future power generation systems [2-8].

[1]  G.M. Cook,et al.  Overview of Battery Power Regulation and Storage , 1991, IEEE Power Engineering Review.

[2]  Hashem Akbari,et al.  Performance evaluation of thermal energy storage systems , 1995 .

[3]  C. A. Ordonez,et al.  Cold Thermal Storage and Cryogenic Heat Engines for Energy Storage Applications , 1997 .

[4]  M. Schroeder,et al.  Voltage quality and reliability from electrical energy-storage systems , 1997 .

[5]  Yousef S.H. Najjar,et al.  Performance analysis of compressed air energy storage (CAES) plant for dry regions , 1998 .

[6]  W. Kessling,et al.  Energy storage in open cycle liquid desiccant cooling systems , 1998 .

[7]  R. Messenger,et al.  Photovoltaic Systems Engineering , 2018 .

[8]  A. P. Karpinski,et al.  Silver–zinc: status of technology and applications , 1999 .

[9]  W. Kolkert,et al.  Electric energy gun technology: status of the French-German-Netherlands programme , 1999 .

[10]  Marc A. Rosen,et al.  Second-law analysis of aquifer thermal energy storage systems , 1999 .

[11]  D. Schmal,et al.  Testing of a sodium/nickel chloride (ZEBRA) battery for electric propulsion of ships and vehicles , 1999 .

[12]  J. N. Baker,et al.  Electrical energy storage at the turn of the Millennium , 1999 .

[13]  O. Weinmann,et al.  Hydrogen-the flexible storage for electrical energy , 1999 .

[14]  B. Multon,et al.  L'énergie électrique : analyse des ressources et de la production , 1999 .

[15]  Akinobu Murata,et al.  Electrical energy storage systems for energy networks , 2000 .

[16]  Irwin B Weinstock,et al.  Recent advances in the US Department of Energy’s energy storage technology research and development programs for hybrid electric and electric vehicles , 2002 .

[17]  Olivier Gergaud,et al.  Modélisation énergétique et optimisation économique d'un système de production éolien et photovoltaïque couplé au réseau et associé à un accumulateur , 2002 .

[18]  D. Stolten,et al.  Ten years of operational experience with a hydrogen-based renewable energy supply system , 2003 .

[19]  Ryoichi Takahata,et al.  Progress of superconducting bearing technologies for flywheel energy storage systems , 2003 .

[20]  Robert Palumbo,et al.  Solar Thermochemical Process Technology , 2003 .

[21]  Marie Ruellan,et al.  Solutions de stockage de l'énergie pour les systèmes de production intermittente d'électricité renouvelable , 2004 .

[22]  J.R. Sears,et al.  TEX: the next generation of energy storage technology , 2004, INTELEC 2004. 26th Annual International Telecommunications Energy Conference.

[23]  Martin Koller,et al.  Advanced Adiabatic Compressed Air Energy Storage for the Integration of Wind Energy , 2004 .

[24]  J. Iannucci,et al.  Energy Storage Benefits and Market Analysis Handbook A Study for the DOE Energy Storage Systems Program , 2004 .

[25]  Daniel S. Kirschen,et al.  What is spinning reserve , 2005 .

[26]  Yasunori Suzuki,et al.  Novel applications of the flywheel energy storage system , 2005 .

[27]  W. P. M. H. Heemels,et al.  Energy management strategies for vehicular electric power systems , 2005, IEEE Transactions on Vehicular Technology.

[28]  Mohammad Ameri,et al.  Performance and economic of the thermal energy storage systems to enhance the peaking capacity of the gas turbines , 2005 .

[29]  Kodjo Agbossou,et al.  Control analysis of renewable energy system with hydrogen storage for residential applications , 2006 .

[30]  Ka Wai Eric Cheng,et al.  A study of the status and future of superconducting magnetic energy storage in power systems , 2006 .

[31]  N. Hamsic,et al.  Stabilising the Grid Voltage and Frequency in Isolated Power Systems Using a Flywheel Energy Storage System , 2006 .

[32]  Guangming Chen,et al.  A new compressed air energy storage refrigeration system , 2006 .

[33]  Septimus van der Linden,et al.  Bulk energy storage potential in the USA, current developments and future prospects , 2006 .

[34]  Haisheng Chen,et al.  Liquid nitrogen injection into water: Pressure build-up and heat transfer , 2006 .

[35]  James F. Miller,et al.  Key challenges and recent progress in batteries, fuel cells, and hydrogen storage for clean energy systems , 2006 .

[36]  C. Buenoa,et al.  Wind powered pumped hydro storage systems , a means of increasing the penetration of renewable energy in the Canary Islands , 2006 .

[37]  Y. Najjar,et al.  Comparison of performance of compressed-air energy-storage plant with compressed-air storage with humidification , 2006 .

[38]  陈海生,et al.  A method of storing energy and a cryogenic energy storage system , 2007 .

[39]  J. Apt,et al.  Economics of electric energy storage for energy arbitrage and regulation in New York , 2007 .

[40]  J.A. McDowall Status and Outlook of the Energy Storage Market , 2007, 2007 IEEE Power Engineering Society General Meeting.

[41]  A. Ilinca,et al.  Study of a Hybrid Wind-Diesel System with Compressed Air Energy Storage , 2007, 2007 IEEE Canada Electrical Power Conference.

[42]  Gerard Ledwich,et al.  Energy Requirement for Distributed Energy Resources with Battery Energy Storage for Voltage Support in Three-Phase Distribution lines , 2007 .

[43]  E. Ortjohann,et al.  Increasing Renewable Energy Penetration in Isolated Grids Using a Flywheel Energy Storage System , 2007, 2007 International Conference on Power Engineering, Energy and Electrical Drives.

[44]  P.K. Sen,et al.  Advancement of energy storage devices and applications in electrical power system , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[45]  Queen Avenue Sw,et al.  National Energy Technology Laboratory , 2008 .

[46]  H. Ibrahima,et al.  Energy storage systems — Characteristics and comparisons , 2008 .

[47]  E. Ortjohann,et al.  Challenges in integrating distributed Energy storage systems into future smart grid , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[48]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[49]  F. Faure,et al.  SUSPENSION MAGNETIQUE POUR VOLANT D'INERTIE , 2009 .

[50]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[51]  Jonathan Dipl.-Ing. Brix,et al.  Electrical energy storage , 2010 .

[52]  Sandia Report,et al.  Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide A Study for the DOE Energy Storage Systems Program , 2010 .

[53]  D. Connolly A Review of Energy Storage Technologies: For the integration of fluctuating renewable energy , 2010 .

[54]  Srdjan M. Lukic,et al.  Energy Storage Systems for Transport and Grid Applications , 2010, IEEE Transactions on Industrial Electronics.

[55]  Эндрю Джон Бисселл,et al.  Energy storage systems , 2014 .

[56]  Ahmed M. Massoud,et al.  Flywheel Energy Storage Systems , 2015 .