How mutation affects evolutionary games on graphs.

Evolutionary dynamics are affected by population structure, mutation rates and update rules. Spatial or network structure facilitates the clustering of strategies, which represents a mechanism for the evolution of cooperation. Mutation dilutes this effect. Here we analyze how mutation influences evolutionary clustering on graphs. We introduce new mathematical methods to evolutionary game theory, specifically the analysis of coalescing random walks via generating functions. These techniques allow us to derive exact identity-by-descent (IBD) probabilities, which characterize spatial assortment on lattices and Cayley trees. From these IBD probabilities we obtain exact conditions for the evolution of cooperation and other game strategies, showing the dual effects of graph topology and mutation rate. High mutation rates diminish the clustering of cooperators, hindering their evolutionary success. Our model can represent either genetic evolution with mutation, or social imitation processes with random strategy exploration.

[1]  M. Nowak,et al.  The evolution of eusociality , 2010, Nature.

[2]  J. Wakeley Coalescent Theory: An Introduction , 2008 .

[3]  Neal Madras,et al.  The noisy voter model , 1995 .

[4]  F. C. Santos,et al.  Scale-free networks provide a unifying framework for the emergence of cooperation. , 2005, Physical review letters.

[5]  Martin A. Nowak,et al.  Analytical Results for Individual and Group Selection of Any Intensity , 2008, Bulletin of mathematical biology.

[6]  Nathanael Berestycki,et al.  Recent progress in coalescent theory , 2009, Ensaios Matemáticos.

[7]  J. T. Cox,et al.  Coalescing Random Walks and Voter Model Consensus Times on the Torus in $\mathbb{Z}^d$ , 1989 .

[8]  M. Kimura,et al.  The Stepping Stone Model of Population Structure and the Decrease of Genetic Correlation with Distance. , 1964, Genetics.

[9]  Martin A Nowak,et al.  Evolutionary dynamics in set structured populations , 2009, Proceedings of the National Academy of Sciences.

[10]  M. Nowak,et al.  Evolutionary dynamics in structured populations , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[11]  U. Dieckmann,et al.  THE ADAPTIVE DYNAMICS OF ALTRUISM IN SPATIALLY HETEROGENEOUS POPULATIONS , 2003, Evolution; international journal of organic evolution.

[12]  M. Gilpin Group selection in predator-prey communities. , 1975, Monographs in population biology.

[13]  Alan Grafen,et al.  Natural selection of altruism in inelastic viscous homogeneous populations. , 2008, Journal of theoretical biology.

[14]  Arne Traulsen,et al.  Exploration dynamics in evolutionary games , 2009, Proceedings of the National Academy of Sciences.

[15]  H. Ohtsuki,et al.  Strategy selection in structured populations. , 2009, Journal of theoretical biology.

[16]  F. Rousset Genetic Structure and Selection in Subdivided Populations (MPB-40) , 2004 .

[17]  Long Wang,et al.  Social dilemmas in an online social network: The structure and evolution of cooperation , 2007, physics/0701323.

[18]  D. B. Tyler,et al.  Recurrence of simple random walk in the plane , 1993 .

[19]  Ángel Sánchez,et al.  Effect of spatial structure on the evolution of cooperation , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Wolfgang Woess,et al.  Denumerable Markov Chains: Generating Functions, Boundary Theory, Random Walks on Trees , 2009 .

[21]  P. Taylor,et al.  How to make a kin selection model. , 1996, Journal of theoretical biology.

[22]  Ángel Sánchez,et al.  Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics , 2009, Physics of life reviews.

[23]  F. C. Santos,et al.  Social diversity promotes the emergence of cooperation in public goods games , 2008, Nature.

[24]  Ulf Dieckmann,et al.  The Geometry of Ecological Interactions: Simplifying Spatial Complexity , 2000 .

[25]  Robert M. May,et al.  Species coexistence and self-organizing spatial dynamics , 1994, Nature.

[26]  L. Beineke,et al.  Topics in algebraic graph theory , 2004 .

[27]  A Grafen,et al.  An inclusive fitness analysis of altruism on a cyclical network , 2007, Journal of evolutionary biology.

[28]  Martin A. Nowak,et al.  Evolutionary dynamics on graphs , 2005, Nature.

[29]  Yoh Iwasa,et al.  The Geometry of Ecological Interactions: Lattice Models and Pair Approximation in Ecology , 2000 .

[30]  D. Wilson,et al.  Population viscosity and the evolution of altruism. , 2000, Journal of theoretical biology.

[31]  D. Fudenberg,et al.  Emergence of cooperation and evolutionary stability in finite populations , 2004, Nature.

[32]  Petter Holme,et al.  Prisoners' dilemma in real-world acquaintance networks: spikes and quasiequilibria induced by the interplay between structure and dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Y. Iwasa,et al.  The evolution of cooperation in a lattice-structured population. , 1997, Journal of theoretical biology.

[34]  M. Perc,et al.  Social diversity and promotion of cooperation in the spatial prisoner's dilemma game. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[36]  Akira Sasaki,et al.  Statistical Mechanics of Population: The Lattice Lotka-Volterra Model , 1992 .

[37]  Yaneer Bar-Yam,et al.  Theory predicts the uneven distribution of genetic diversity within species , 2004, Nature.

[38]  Long Wang,et al.  Universality of weak selection. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  M. Hassell,et al.  Metapopulation structures affect persistence of predator–prey interactions , 2002 .

[40]  M. Nowak,et al.  Evolutionary games and spatial chaos , 1992, Nature.

[41]  Katrin Fehl,et al.  Co-evolution of behaviour and social network structure promotes human cooperation. , 2011, Ecology letters.

[42]  Long Wang,et al.  Evolution of Cooperation on Stochastic Dynamical Networks , 2010, PloS one.

[43]  A. Sasaki,et al.  ‘Small worlds’ and the evolution of virulence: infection occurs locally and at a distance , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[44]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[45]  Arne Traulsen,et al.  Coevolution of strategy and structure in complex networks with dynamical linking. , 2006, Physical review letters.

[46]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[47]  H. Ohtsuki,et al.  Evolutionary stability on graphs. , 2008, Journal of theoretical biology.

[48]  Arne Traulsen,et al.  Human strategy updating in evolutionary games , 2010, Proceedings of the National Academy of Sciences.

[49]  Gregory F. Lawler,et al.  Random Walk: A Modern Introduction , 2010 .

[50]  M. Nowak Five Rules for the Evolution of Cooperation , 2006, Science.

[51]  H. Ohtsuki,et al.  A simple rule for the evolution of cooperation on graphs and social networks , 2006, Nature.

[52]  C. Hauert,et al.  Reputation-based partner choice promotes cooperation in social networks. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Karl Peter Hadeler,et al.  Mathematics Inspired by Biology , 2000 .

[54]  M. Baalen,et al.  The Unit of Selection in Viscous Populations and the Evolution of Altruism. , 1998, Journal of theoretical biology.

[55]  C. J-F,et al.  THE COALESCENT , 1980 .

[56]  D. Helbing,et al.  The outbreak of cooperation among success-driven individuals under noisy conditions , 2009, Proceedings of the National Academy of Sciences.

[57]  Peter D. Taylor,et al.  Evolution of cooperation in a finite homogeneous graph , 2007, Nature.

[58]  Martin A. Nowak,et al.  Evolution of cooperation by phenotypic similarity , 2008, Proceedings of the National Academy of Sciences.

[59]  M. Doebeli,et al.  Spatial evolutionary game theory: Hawks and Doves revisited , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[60]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[61]  Rick Durrett,et al.  Stochastic Spatial Models , 1999, SIAM Rev..

[62]  E. Montroll Random walks on lattices , 1969 .