Deaf-1 regulates epithelial cell proliferation and side-branching in the mammary gland

[1]  Mark D. Aupperlee,et al.  Differential hormonal regulation and function of progesterone receptor isoforms in normal adult mouse mammary gland. , 2007, Endocrinology.

[2]  J. Davis Bioinformatics and Computational Biology Solutions Using R and Bioconductor , 2007 .

[3]  A. Strasser,et al.  BIM regulates apoptosis during mammary ductal morphogenesis, and its absence reveals alternative cell death mechanisms. , 2007, Developmental cell.

[4]  J. Visvader,et al.  c‐myc as a mediator of accelerated apoptosis and involution in mammary glands lacking Socs3 , 2006, The EMBO journal.

[5]  J. Howlin,et al.  Pubertal Mammary Gland Development: Insights from Mouse Models , 2006, Journal of Mammary Gland Biology and Neoplasia.

[6]  Amanda Y. Chan,et al.  Roles of the Rac1 and Rac3 GTPases in human tumor cell invasion , 2005, Oncogene.

[7]  Mark D. Aupperlee,et al.  Progesterone receptor isoforms A and B: temporal and spatial differences in expression during murine mammary gland development. , 2005, Endocrinology.

[8]  Rafael A. Irizarry,et al.  Bioinformatics and Computational Biology Solutions using R and Bioconductor , 2005 .

[9]  J. Visvader,et al.  Loss of the LIM domain protein Lmo4 in the mammary gland during pregnancy impedes lobuloalveolar development , 2005, Oncogene.

[10]  J. Visvader,et al.  Overexpression of LMO4 induces mammary hyperplasia, promotes cell invasion, and is a predictor of poor outcome in breast cancer. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[11]  F. DeMayo,et al.  Revealing progesterone's role in uterine and mammary gland biology: insights from the mouse. , 2005, Seminars in reproductive medicine.

[12]  S. Orkin,et al.  Defective Neural Tube Closure and Anteroposterior Patterning in Mice Lacking the LIM Protein LMO4 or Its Interacting Partner Deaf-1 , 2004, Molecular and Cellular Biology.

[13]  B. Andersen,et al.  Expression of an engrailed-LMO4 fusion protein in mammary epithelial cells inhibits mammary gland development in mice , 2004, Oncogene.

[14]  G. Borisy,et al.  Cell Migration: Integrating Signals from Front to Back , 2003, Science.

[15]  V. Kaartinen,et al.  Targeted Expression of Activated Rac3 in Mammary Epithelium Leads to Defective Postlactational Involution and Benign Mammary Gland Lesions , 2003, Cells Tissues Organs.

[16]  J. Visvader,et al.  Transcriptional regulators in mammary gland development and cancer. , 2003, The international journal of biochemistry & cell biology.

[17]  Jayanta Debnath,et al.  Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. , 2003, Methods.

[18]  W. McGinnis,et al.  DEAF‐1 function is essential for the early embryonic development of drosophila , 2002, Genesis.

[19]  L. Hennighausen,et al.  Signaling pathways in mammary gland development. , 2001, Developmental cell.

[20]  J. Lydon,et al.  Reproductive functions of the progesterone receptor isoforms: lessons from knock-out mice , 2001, Molecular and Cellular Endocrinology.

[21]  C. Atwood,et al.  Progesterone induces side-branching of the ductal epithelium in the mammary glands of peripubertal mice. , 2000, The Journal of endocrinology.

[22]  R. Weinberg,et al.  Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. , 2000, Genes & development.

[23]  J. Groffen,et al.  Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. Rosenfeld,et al.  Mouse deformed epidermal autoregulatory factor 1 recruits a LIM domain factor, LMO-4, and CLIM coregulators. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  K. Mowen,et al.  Characterization of a nuclear deformed epidermal autoregulatory factor-1 (DEAF-1)-related (NUDR) transcriptional regulator protein. , 1998, Molecular endocrinology.

[26]  N. Heisterkamp,et al.  Characterization of RAC3, a Novel Member of the Rho Family* , 1997, The Journal of Biological Chemistry.

[27]  W. McGinnis,et al.  DEAF‐1, a novel protein that binds an essential region in a Deformed response element. , 1996, The EMBO journal.

[28]  J. Russo,et al.  Morphological expression of cell transformation induced by c-Ha-ras oncogene in human breast epithelial cells. , 1991, Journal of cell science.

[29]  C. Ramachandran,et al.  Murine progesterone receptor exists predominantly as the 83-kilodalton ‘A’ form , 1991, The Journal of Steroid Biochemistry and Molecular Biology.

[30]  J. Russo,et al.  Isolation and characterization of a spontaneously immortalized human breast epithelial cell line, MCF-10. , 1990, Cancer research.

[31]  P. Leder,et al.  Animal models of human disease. Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes. , 1989, The American journal of pathology.

[32]  F. Talamantes,et al.  Ectopic pituitary grafts in mice: hormone levels, effects on fertility, and the development of adenomyosis uteri, prolactinomas, and mammary carcinomas. , 1985, Endocrinology.

[33]  Mark D. Aupperlee,et al.  Progesterone receptor isoform functions in normal breast development and breast cancer. , 2008, Critical reviews in eukaryotic gene expression.

[34]  Y. M. S. Eleanor,et al.  LMO4の過剰発現は乳癌患者において乳腺過形成を誘導し,細胞浸潤を促進し,予後不良の予測因子になる , 2005 .

[35]  A. Klein-Szanto,et al.  Transformation of Human Breast Epithelial Cells by c‐Ha‐ras Oncogene , 1991, Molecular carcinogenesis.

[36]  T. C. Jones,et al.  ANIMAL MODELS OF HUMAN DISEASE , 2009 .