Shallow Radar (SHARAD), pedestal craters, and the lost Martian layers: Initial assessments

[1] Since their discovery, Martian pedestal craters have been interpreted as remnants of layers that were once regionally extensive but have since been mostly removed. Pedestals span from subkilometer to hundreds of kilometers, but their thickness is less than ∼500 m. Except for a small equatorial concentration in the Medusae Fossae Formation, the nearly exclusive occurrence of pedestal craters in the middle and high latitudes of Mars has led to the suspicion that the lost units bore a significant fraction of volatiles, such as water ice. Recent morphological characterizations of pedestal deposits have further supported this view. Here we employ radar soundings obtained by the Shallow Radar (SHARAD) to investigate the volumes of a subset of the pedestal population, in concert with high-resolution imagery to assist our interpretations. From the analysis of 97 pedestal craters we find that large pedestals (diameter >30 km) are relatively transparent to radar in their majority, with SHARAD being able to detect the base of the pedestal deposits, and possess an average dielectric permittivity of 4 ± 0.5. In one of the cases of large pedestals in Malea Planum, layering is detected both in SHARAD data and in high-resolution imagery of the pedestal margins. We find that clutter is a major issue in the analysis of radar soundings for smaller pedestals, and tentative detection of the basal reflection occurs in only a few of the cases examined. These detections yield a higher average permittivity of ∼6. The permittivity value derived for the larger pedestals, for which a basal reflection is unambiguous, is higher than that of pure water ice but lower than that of most silicate materials. A mixture of ice and silicates or an ice-free porous silicate matrix can explain a permittivity of ∼4, and radar alone cannot resolve this nonuniqueness. Data from the Compact Reconnaissance Imaging Spectrometer (CRISM) tentatively confirms a mafic component in at least one pedestal in Malea Planum. Interpretation of SHARAD results can support either a mixture of ice and silicates or a porous silicate. The former is compatible with a model where nonpolar ice is periodically deposited in the midlatitudes as a result of obliquity variations. The latter is compatible with ash deposits, at least in where pedestals appear in volcanic centers such as Malea Planum.

[1]  J. Head,et al.  Thermal contraction crack polygons on Mars: A synthesis from HiRISE, Phoenix, and terrestrial analog studies , 2010 .

[2]  T. Hare,et al.  NORTHERN PLAINS CRATERFORMS: EVIDENCE FOR THE ACCUMULATION AND DEGRADATION OF PALEO-MANTLES , 2006 .

[3]  D. J. Milton,et al.  Geological framework of the south polar region of Mars. , 1972 .

[4]  D. Daniels Ground Penetrating Radar , 2005 .

[5]  Duane O. Muhleman,et al.  Radar Investigation of Mars, Mercury, and Titan , 1995 .

[6]  G. Picardia,et al.  Performance and surface scattering models for the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) , 2003 .

[7]  N. Barlow,et al.  Martian pedestal craters: Marginal sublimation pits implicate a climate‐related formation mechanism , 2008 .

[8]  Roger J. Phillips,et al.  Radar subsurface mapping of the polar layered deposits on Mars , 2006 .

[9]  Lisa R. Gaddis,et al.  Radar Remote Sensing of Planetary Surfaces , 2002 .

[10]  Kenneth L. Tanaka,et al.  Geologic Map of the Hellas Region of Mars , 2001 .

[11]  Alessandro Frigeri,et al.  Radar evidence for ice in lobate debris aprons in the mid‐northern latitudes of Mars , 2009 .

[12]  Roberto Orosei,et al.  Mars North Polar Deposits: Stratigraphy, Age, and Geodynamical Response , 2008, Science.

[13]  R. Herrick,et al.  The planforms of low‐angle impact craters in the northern hemisphere of Mars , 2006 .

[14]  D. Muhleman,et al.  Radar Images of Mars , 1991, Science.

[15]  Nicolas Thomas,et al.  Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters , 2009, Science.

[16]  Gary R. Olhoeft,et al.  Frequency and temperature dependence in electromagnetic properties of Martian analog minerals , 2008 .

[17]  R. Phillips,et al.  SHARAD sounding radar on the Mars Reconnaissance Orbiter , 2007 .

[18]  S. Smrekar,et al.  An overview of the Mars Reconnaissance Orbiter (MRO) science mission , 2007 .

[19]  Roberto Orosei,et al.  Radar Soundings of the Subsurface of Mars , 2005, Science.

[20]  G. Schaber,et al.  Martian permafrost features , 1977 .

[21]  John F. Mustard,et al.  Recent ice ages on Mars , 2003, Nature.

[22]  J. Laskar,et al.  Orbital forcing of the martian polar layered deposits , 2002, Nature.

[23]  Kenneth L. Tanaka,et al.  Geologic History of the Polar Regions of Mars Based on Mars Global Surveyor Data: I. Noachian and Hesperian Periods , 2001 .

[24]  J. Head,et al.  The timing of martian valley network activity : Constraints from buffered crater counting , 2008 .

[25]  Raymond E. Arvidson,et al.  The periglacial landscape at the Phoenix landing site , 2009 .

[26]  R. Phillips,et al.  SHARAD: The MRO 2005 shallow radar , 2004 .

[27]  A. Woronow,et al.  Martian rampart and pedestal craters' ejecta-emplacement: Coprates quadrangle , 1980 .

[28]  M. J. Wolff,et al.  CRISM multispectral summary products: Parameterizing mineral diversity on Mars from reflectance , 2007 .

[29]  G. Olhoeft,et al.  Dielectric properties of the first 100 meters of the Moon , 1975 .

[30]  P. Mouginis-Mark,et al.  Ancient oceans in the northern lowlands of Mars: Evidence from impact crater depth/diameter relationships , 2005 .

[31]  J. Mustard,et al.  Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice , 2001, Nature.

[32]  Prasad Gogineni,et al.  Simulation of a surface‐penetrating radar for Mars exploration , 2003 .

[33]  R. Greeley,et al.  The Circum-Hellas Volcanic Province, Mars: Overview , 2009 .

[34]  D. H. Scott,et al.  GEOLOGIC MAP OF THE WESTERN EQUATORIAL REGION OF MARS , 1986 .

[35]  N. Barlow,et al.  Pedestal crater heights on Mars: A proxy for the thicknesses of past, ice-rich, Amazonian deposits , 2010 .

[36]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[37]  Elena Pettinelli,et al.  Frequency and time domain permittivity measurements on solid CO2 and solid CO2–soil mixtures as Martian soil simulants , 2003 .

[38]  N. Barlow Impact craters in the northern hemisphere of Mars: Layered ejecta and central pit characteristics , 2006 .

[39]  J. Cutts Wind erosion in the Martian polar regions , 1973 .

[40]  Michael C. Malin,et al.  Channels on Mars , 1975 .

[41]  R. Arvidson,et al.  Latitudinal variation of wind erosion of crater ejecta deposits on Mars , 1976 .

[42]  Alan D. Howard,et al.  The case for rainfall on a warm, wet early Mars , 2002 .

[43]  J. Holt,et al.  Onset and migration of spiral troughs on Mars revealed by orbital radar , 2010, Nature.

[44]  L. Soderblom,et al.  Latitudinal distribution of a debris mantle on the Martian surface , 1973 .

[45]  Mars Pedestal Crater Escarpments: Evidence for Ejecta-Related Emplacement , 1976 .

[46]  Roberto Orosei,et al.  Radar Sounding of the Medusae Fossae Formation Mars: Equatorial Ice or Dry, Low-Density Deposits? , 2007, Science.

[47]  Kenneth L. Tanaka,et al.  Digital Renovation of the Atlas of Mars 1:15,000,000-Scale Global Geologic Series Maps , 2006 .

[48]  Bruce M. Jakosky,et al.  The distribution and behavior of Martian ground ice during past and present epochs , 1995 .

[49]  S. Stewart,et al.  Excess ejecta craters record episodic ice-rich layers at middle latitudes on Mars , 2008 .

[50]  John F. McCauley,et al.  Mariner 9 evidence for wind erosion in the equatorial and mid‐latitude regions of Mars , 1973 .

[51]  N. Barlow,et al.  Latitude dependence of Martian pedestal craters: Evidence for a sublimation‐driven formation mechanism , 2009 .

[52]  S. H. Ward,et al.  The Apollo 17 Lunar Sounder. , 1973 .

[53]  M. E. Peters,et al.  Echo source discrimination in single-pass airborne radar sounding data from the Dry Valleys, Antarctica: Implications for orbital sounding of Mars , 2006 .

[54]  L. A. Soderblom,et al.  North–south geological differences between the residual polar caps on Mars , 2000, Nature.

[55]  M. Mellon,et al.  Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results , 2001 .

[56]  R. Arvidson,et al.  Accumulation of Sedimentary Debris in the South Polar Region of Mars and Implications for Climate History , 1988 .

[57]  Linda B. Hayden,et al.  Compact reconnaissance imaging spectrometer for MARS (CRISM) , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[58]  R. Phillips,et al.  Examination of gully sites on Mars with the shallow radar , 2010 .

[59]  G. Swayze,et al.  Characterization of phyllosilicates observed in the central Mawrth Vallis region, Mars, their potential formational processes, and implications for past climate , 2009 .

[60]  Ali Safaeinili,et al.  Radar Sounding Evidence for Buried Glaciers in the Southern Mid-Latitudes of Mars , 2008, Science.

[61]  J. Head,et al.  Extensive Hesperian-aged south polar ice sheet on Mars: Evidence for massive melting and retreat, and lateral flow and ponding of meltwater , 2001 .

[62]  Christian Mätzler,et al.  Microwave Properties of Ice and Snow , 1998 .

[63]  Michael H. Carr,et al.  Formation of Martian flood features by release of water from confined aquifers , 1979 .

[64]  R. Greeley,et al.  Martian impact craters and emplacement of ejecta by surface flow , 1977 .

[65]  Roberto Orosei,et al.  Shallow radar (SHARAD) sounding observations of the Medusae Fossae Formation, Mars , 2009 .

[66]  François Poulet,et al.  OMEGA: Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité , 2004 .

[67]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[68]  Gottfried Schwarz,et al.  The high-resolution stereo camera (HRSC) experiment on Mars Express: Instrument aspects and experiment conduct from interplanetary cruise through the nominal mission , 2007 .

[69]  Wlodek Kofman,et al.  MARSIS surface reflectivity of the south residual cap of Mars , 2009 .

[70]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[71]  D. H. Scott,et al.  Geologic map of the polar regions of Mars , 1987 .

[72]  S. Ward,et al.  Electromagnetic reflection from a plane‐layered lunar model , 1968 .

[73]  S. Squyres The distribution of lobate debris aprons and similar flows on Mars , 1979 .

[74]  Dale P. Winebrenner,et al.  Densification of Water Ice Deposits on the Residual North Polar Cap of Mars , 2000 .

[75]  P. Augustinus Rock resistance to erosion: Some further considerations , 1991 .

[76]  Jacques Laskar,et al.  Long term evolution and chaotic diffusion of the insolation quantities of Mars , 2004 .

[77]  J. Garvin,et al.  Deflation/erosion rates for the Parva Member, Dorsa Argentea Formation and implications for the south polar region of Mars , 2003 .

[78]  B. C. Edwards,et al.  Radar Detectability of a Subsurface Ocean on Europa , 1998 .

[79]  James W. Head,et al.  Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change , 2006 .

[80]  Kenneth S. Edgett,et al.  Geologic context of the Mars radar "Stealth" region , 1997 .

[81]  H. J. Hagger,et al.  Electromagnetic Waves in Stratified Media , 1996 .