Dual solutions in mixed convection

Synopsis Dual similarity solutions in the context of mixed convection are presented. In contrast to the Falkner–Skan solutions the bifurcation point is found to be distinct from the point of vanishing skin friction. The eigenvalue problem arising out of a stability analysis of these solutions is examined numerically. The numerical evidence would seem to indicate that the margin of stability is associated with the onset of reverse flow as opposed to the bifurcation point, as conjectured by Banks and Drazin in 1973.