Adaptive sliding mode observer for sensor fault diagnosis of an industrial gas turbine

Abstract Sensors are one of the crucial components in gas turbines and the failure in sensor measurements can lead to serious problems in maintaining their safety and performance requirements. Our aim in this paper is to develop an adaptive sliding mode observer for sensor fault diagnosis in an industrial gas turbine. The proposed observer has a robustness against gas turbine parameter uncertainties caused by degradations without any priori knowledge about the bounds of faults and parameter uncertainties. The efficiency of the proposed fault diagnosis approach is validated with Matlab/Simulink simulations and the realistic gas turbine data extracted from the PROOSIS software.

[1]  Tzu-Chun Kuo,et al.  Adaptive Sliding-Mode Control for NonlinearSystems With Uncertain Parameters , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[2]  Max Donath,et al.  American Control Conference , 1993 .

[3]  Stephen Ogaji,et al.  Evolution strategy for gas-turbine fault-diagnoses , 2005 .

[4]  V. Sundararajan,et al.  Survey of Advancements in Jet-Engine Thermodynamic Simulation , 2000 .

[5]  W. Cholewa,et al.  Fault Diagnosis: Models, Artificial Intelligence, Applications , 2004 .

[6]  Sébastien Borguet,et al.  Coupling principal component analysis and Kalman filtering algorithms for on-line aircraft engine diagnostics , 2009 .

[7]  Vadim I. Utkin,et al.  Chattering suppression methods in sliding mode control systems , 2007, Annu. Rev. Control..

[8]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[9]  Donald L. Simon,et al.  Hybrid Kalman Filter Approach for Aircraft Engine In-Flight Diagnostics: Sensor Fault Detection Case , 2007 .

[10]  Nan Liu,et al.  An integrated nonlinear model-based approach to gas turbine engine sensor fault diagnostics , 2014 .

[11]  Louis A. Urban,et al.  Gas Path Analysis Applied to Turbine Engine Condition Monitoring , 1973 .

[12]  Clifford Goodman,et al.  American Society of Mechanical Engineers , 1988 .

[13]  Allan J. Volponi,et al.  The Use of Kalman Filter and Neural Network Methodologies in Gas Turbine Performance Diagnostics: A Comparative Study , 2000 .

[14]  Emre Kiyak,et al.  The identification of aircraft sensor fault size via fuzzy logic , 2011 .

[15]  Christopher Edwards,et al.  Sliding mode observers for detection and reconstruction of sensor faults , 2002, Autom..

[16]  Yuri B. Shtessel,et al.  New methodologies for adaptive sliding mode control , 2010, Int. J. Control.

[17]  N. Aretakis,et al.  Identification of sensor faults on turbofan engines using pattern recognition techniques , 2004 .

[18]  Donald L. Simon,et al.  A Unified Nonlinear Adaptive Approach for Detection and Isolation of Engine Faults , 2010 .

[19]  Paul Fletcher,et al.  Gas Turbine Performance , 1998 .

[20]  Khashayar Khorasani,et al.  A Multiple Model-Based Approach for Fault Diagnosis of Jet Engines , 2013, IEEE Transactions on Control Systems Technology.

[21]  Stephen Ogaji,et al.  Multiple-sensor fault-diagnoses for a 2-shaft stationary gas-turbine , 2002 .

[22]  Henry Cohen,et al.  Gas turbine theory , 1973 .

[23]  Donald L. Simon,et al.  Evaluation of an Enhanced Bank of Kalman Filters for In-Flight Aircraft Engine Sensor Fault Diagnostics , 2005 .

[24]  Christopher Edwards,et al.  Nonlinear robust fault reconstruction and estimation using a sliding mode observer , 2007, Autom..

[25]  Jean-Pierre Barbot,et al.  Sliding Mode Control In Engineering , 2002 .

[26]  Jean-Jacques E. Slotine,et al.  On Sliding Observers for Nonlinear Systems , 1986 .

[27]  Xi Wang,et al.  LMI-based aircraft engine sensor fault diagnosis using a bank of robust H∞ filters , 2010, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010).

[28]  Xue Wei,et al.  Aircraft Engine Sensor Fault Diagnostics Based on Estimation of Engine's Health Degradation , 2009 .

[29]  A. Trucco,et al.  Modelling and Recoupling the Control Loops in a Heavy-Duty Gas Turbine Plant , 1995 .

[30]  Khashayar Khorasani,et al.  Dynamic Performance Simulation of an Aeroderivative Gas Turbine Using the Matlab Simulink Environment , 2013 .

[31]  Silvio Simani,et al.  Fault diagnosis of an industrial gas turbine prototype using a system identification approach , 2008 .

[32]  Nader Meskin,et al.  Multiple-Model Sensor and Components Fault Diagnosis in Gas Turbine Engines Using Autoassociative Neural Networks , 2014 .

[33]  Khashayar Khorasani,et al.  Nonlinear Fault Diagnosis of Jet Engines by Using a Multiple Model-Based Approach , 2012 .

[34]  T. Floquet,et al.  On Sliding Mode Observers for Systems with Unknown Inputs , 2006, International Workshop on Variable Structure Systems, 2006. VSS'06..

[35]  Khashayar Khorasani,et al.  Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach , 2014, Inf. Sci..

[36]  Riti Singh,et al.  An Integrated Fault Diagnostics Model Using Genetic Algorithm and Neural Networks , 2006 .