유전자 알고리즘을 이용한 강인한 Support vector machine 설계

Support vector machine (SVM)은 튼튼한 이론적 배경을 가지고 있고 구조적 위험을 성공적으로 최소화하기 때문에 추천가 시스템과 같은 다양한 패턴 인식 분야에서 사용되고 있다. 하지만 SVM이 초평면을 결정할 때 이상점들은 margin 손실들을 가지고 있기 때문에 이들은 초평면을 결정하는데 매우 중요한 역할을 하고 있다. 그 이유로 SVM은 이상점들에게 매우 민감한 문제점을 갖는다. 강인한 SVM을 위해 우리는 이상점들의 margin 손실의 최대치를 제한하지만 이것은 non-convex 최적화 문제를 포함한다. 따라서 본 논문에서는 non-convex 최적화 문제에 적합한 유전자 알고리즘을 이용하여 강인한 SVM을 설계하는 방법을 제안한다. 제안하는 알고리즘의 우수성을 보여주기 위하여 UCI repository에서 선택된 여러 데이터베이스들을 이용한 실험을 수행하였다.