Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization.

Tip-functionalized nanorods: Single-particle spectroscopy shows that functionalization of small gold nanorods with thiol groups leads to a broadening of the plasmon resonance by chemical interface damping. By specifically functionalizing the tips of the nanorod (see picture) this broadening is nearly eliminated while the sensing performance is maintained relative to fully functionalized particles.

[1]  J. Chon,et al.  High-temperature seedless synthesis of gold nanorods. , 2006, The journal of physical chemistry. B.

[2]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[3]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[4]  Robert R. Ishmukhametov,et al.  Direct observation of stepped proteolipid ring rotation in E. coli FoF1‐ATP synthase , 2010, The EMBO journal.

[5]  Lauro T Kubota,et al.  Determination of thickness, dielectric constant of thiol films, and kinetics of adsorption using surface plasmon resonance. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[6]  L. Liz‐Marzán,et al.  Evidence for Hydrogen-Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution , 2010 .

[7]  M. A. García,et al.  Surface plasmon resonance of capped Au nanoparticles , 2005 .

[8]  A. Henglein,et al.  Surface chemistry of colloidal silver: surface plasmon damping by chemisorbed iodide, hydrosulfide (SH-), and phenylthiolate , 1993 .

[9]  Uwe H F Bunz,et al.  Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. , 2003, Journal of the American Chemical Society.

[10]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[11]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[12]  Hristina Petrova,et al.  Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. , 2006, Physical chemistry chemical physics : PCCP.

[13]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[14]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[15]  Michel Orrit,et al.  Single metal nanoparticles: optical detection, spectroscopy and applications , 2011 .

[16]  Mostafa A. El-Sayed,et al.  Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method , 2003 .

[17]  B. Nikoobakht,et al.  種結晶を媒介とした成長法を用いた金ナノロッド(NR)の調製と成長メカニズム , 2003 .

[18]  Adam Wax,et al.  Label-free plasmonic detection of biomolecular binding by a single gold nanorod. , 2008, Analytical chemistry.

[19]  George C. Schatz,et al.  Reversing the size-dependence of surface plasmon resonances , 2010, Proceedings of the National Academy of Sciences.

[20]  Janos Vörös,et al.  The density and refractive index of adsorbing protein layers. , 2004, Biophysical journal.

[21]  Jianfang Wang,et al.  Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. , 2007, Journal of the American Chemical Society.

[22]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[23]  V. Sandoghdar,et al.  Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. , 2004, Physical review letters.

[24]  Akihiro Kusumi,et al.  Phospholipids undergo hop diffusion in compartmentalized cell membrane , 2002, The Journal of cell biology.