Droplet nucleation: Physically‐based parameterizations and comparative evaluation

One of the greatest sources of uncertainty in simulations of climate and climate change is the influence of aerosols on the optical properties of clouds. The root of this influence is the droplet nucleation process, which involves the spontaneous growth of aerosol into cloud droplets at cloud edges, during the early stages of cloud formation, and in some cases within the interior of mature clouds. Numerical models of droplet nucleation represent much of the complexity of the process, but at a computational cost that limits their application to simulations of hours or days. Physically‐based parameterizations of droplet nucleation are designed to quickly estimate the number nucleated as a function of the primary controlling parameters: the aerosol number size distribution, hygroscopicity and cooling rate. Here we compare and contrast the key assumptions used in developing each of the most popular parameterizations and compare their performances under a variety of conditions. We find that the more complex parameterizations perform well under a wider variety of nucleation conditions, but all parameterizations perform well under the most common conditions. We then discuss the various applications of the parameterizations to cloud‐resolving, regional and global models to study aerosol effects on clouds at a wide range of spatial and temporal scales. We compare estimates of anthropogenic aerosol indirect effects using two different parameterizations applied to the same global climate model, and find that the estimates of indirect effects differ by only 10%. We conclude with a summary of the outstanding challenges remaining for further development and application.

[1]  E. Kassianov,et al.  Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF , 2011 .

[2]  I. Sokolik,et al.  Hygroscopic properties of volcanic ash , 2011 .

[3]  A. Nenes,et al.  Global distribution of cloud droplet number concentration, autoconversion rate, and aerosol indirect effect under diabatic droplet activation , 2011 .

[4]  C. Kottmeier,et al.  Regional scale effects of the aerosol cloud interaction simulated with an online coupled comprehensive chemistry model , 2011 .

[5]  Prashant Kumar,et al.  Measurements of cloud condensation nuclei activity and droplet activation kinetics of fresh unprocessed regional dust samples and minerals , 2011 .

[6]  P. Adams,et al.  Effect of primary organic sea spray emissions on cloud condensation nuclei concentrations , 2011 .

[7]  Xiaoliang Song,et al.  Microphysics parameterization for convective clouds in a global climate model: Description and single‐column model tests , 2011 .

[8]  A. Nenes,et al.  Cloud condensation nuclei activity of isoprene secondary organic aerosol , 2011 .

[9]  Philippe Schmitt-Kopplin,et al.  Physico-chemical characterization of SOA derived from catechol and guaiacol – a model substance for the aromatic fraction of atmospheric HULIS , 2011 .

[10]  U. Lohmann,et al.  Impact of parametric uncertainties on the present-day climate and on the anthropogenic aerosol effect , 2010 .

[11]  Alan Gadian,et al.  Cloud‐aerosol interactions for boundary layer stratocumulus in the Lagrangian Cloud Model , 2010 .

[12]  Zev Levin,et al.  An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation , 2010 .

[13]  Evgueni I. Kassianov,et al.  The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation , 2010 .

[14]  Brian M. Griffin,et al.  Multi-variate probability density functions with dynamics for cloud droplet activation in large-scale models: single column tests , 2010 .

[15]  A. Nenes,et al.  Characteristic updrafts for computing distribution‐averaged cloud droplet number and stratocumulus cloud properties , 2010 .

[16]  J. Golaz,et al.  Two-moment bulk stratiform cloud microphysics in the GFDL AM3 GCM: description, evaluation, and sensitivity tests , 2010 .

[17]  J. Penner,et al.  Thunderstorm and stratocumulus: how does their contrasting morphology affect their interactions with aerosols? , 2010 .

[18]  J. Seinfeld,et al.  Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100 , 2010 .

[19]  A. Nenes,et al.  Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City , 2010 .

[20]  B. Shipway,et al.  Analytical estimation of cloud droplet nucleation based on an underlying aerosol population , 2010 .

[21]  J. Seinfeld,et al.  Will black carbon mitigation dampen aerosol indirect forcing? , 2010 .

[22]  J. Seinfeld,et al.  Water-soluble SOA from Alkene ozonolysis: composition and droplet activation kinetics inferences from analysis of CCN activity , 2010 .

[23]  J. Slowik,et al.  Slower CCN growth kinetics of anthropogenic aerosol compared to biogenic aerosol observed at a rural site , 2010 .

[24]  Prashant Kumar,et al.  Importance of adsorption for CCN activity and hygroscopic properties of mineral dust aerosol , 2009 .

[25]  A. Heymsfield,et al.  Microphysics of Maritime Tropical Convective Updrafts at Temperatures from -20° to -60° , 2009 .

[26]  Johannes Quaas,et al.  Total aerosol effect: radiative forcing or radiative flux perturbation? , 2009 .

[27]  J. Comstock,et al.  Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds , 2009 .

[28]  P. Stier,et al.  Comprehensively accounting for the effect of giant CCN in cloud activation parameterizations , 2009 .

[29]  J. Lamarque,et al.  Aerosol indirect effects – general circulation model intercomparison and evaluation with satellite data , 2009 .

[30]  Y. Sud,et al.  Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions – Part 1: Africa and India , 2009 .

[31]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[32]  A. Nenes,et al.  Atmospheric Chemistry and Physics Cloud Condensation Nuclei Measurements in the Marine Boundary Layer of the Eastern Mediterranean: Ccn Closure and Droplet Growth Kinetics , 2022 .

[33]  J. Penner,et al.  Comparison of a global-climate model simulation to a cloud-system resolving model simulation for long-term thin stratocumulus clouds , 2009 .

[34]  C. Ruehl,et al.  Distinct CCN activation kinetics above the marine boundary layer along the California coast , 2009 .

[35]  J. Curry,et al.  Parameterization of Cloud Drop Activation Based on Analytical Asymptotic Solutions to the Supersaturation Equation , 2009 .

[36]  C. Dearden Investigating the simulation of cloud microphysical processes in numerical models using a one‐dimensional dynamical framework , 2009 .

[37]  William A. Welch,et al.  Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. , 2009, Environmental science & technology.

[38]  M. Chipperfield,et al.  The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model , 2009 .

[39]  C. Bretherton,et al.  The University of Washington Shallow Convection and Moist Turbulence Schemes and Their Impact on Climate Simulations with the Community Atmosphere Model , 2009 .

[40]  C. Bretherton,et al.  A New Moist Turbulence Parameterization in the Community Atmosphere Model , 2009 .

[41]  W. Hsieh Representing droplet size distribution andcloud processes in aerosol-cloud-climateinteraction studies , 2009 .

[42]  L. Donner,et al.  Sensitivity of aerosol and cloud effects on radiation to cloud types: comparison between deep convective clouds and warm stratiform clouds over one-day period , 2009 .

[43]  Prashant Kumar,et al.  Parameterization of cloud droplet formation for global and regional models: including adsorption activation from insoluble CCN , 2009 .

[44]  Andrew Gettelman,et al.  Constraining cloud droplet number concentration in GCMs suppresses the aerosol indirect effect , 2009 .

[45]  Oleg A. Krasnov,et al.  Investigation of Droplet Size Distributions and Drizzle Formation Using A New Trajectory Ensemble Model. Part II: Lucky Parcels , 2009 .

[46]  B. Turpin,et al.  Secondary organic aerosol production from aqueous photooxidation of glycolaldehyde: Laboratory experiments , 2009 .

[47]  S. Shima,et al.  The super‐droplet method for the numerical simulation of clouds and precipitation: a particle‐based and probabilistic microphysics model coupled with a non‐hydrostatic model , 2007, physics/0701103.

[48]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[49]  M. Dubey,et al.  The potential impacts of pollution on a nondrizzling stratus deck : Does aerosol number matter more than type? , 2008 .

[50]  A. Kirkevåg,et al.  Modeling of the Wegener–Bergeron–Findeisen process—implications for aerosol indirect effects , 2008 .

[51]  J. Seinfeld,et al.  Comprehensive airborne characterization of aerosol from a major bovine source , 2008 .

[52]  J. Curry,et al.  Kinetics of Cloud Drop Formation and Its Parameterization for Cloud and Climate Models , 2008 .

[53]  L. Donner,et al.  The dependence of aerosol effects on clouds and precipitation on cloud‐system organization, shear and stability , 2008 .

[54]  M. Komppula,et al.  Parameterization of cloud droplet activation using a simplified treatment of the aerosol number size distribution , 2008 .

[55]  Y. Wang,et al.  Implementation of a two‐moment bulk microphysics scheme to the WRF model to investigate aerosol‐cloud interaction , 2008 .

[56]  Andrew Gettelman,et al.  A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests , 2008 .

[57]  S. Ghan,et al.  A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part II: Single-Column and Global Results , 2008 .

[58]  Spyros N. Pandis,et al.  CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol , 2008 .

[59]  J. Penner,et al.  Aerosol indirect forcing in a global model with particle nucleation , 2008 .

[60]  L. Donner,et al.  (www.interscience.wiley.com) DOI: 10.1002/qj.287 Examination of aerosol effects on precipitation in deep convective clouds during the 1997 ARM summer experiment , 2022 .

[61]  A. Nenes,et al.  Relating CCN activity, volatility, and droplet growth kinetics of β-caryophyllene secondary organic aerosol , 2008 .

[62]  G. McFarquhar,et al.  Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model : Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations , 2008 .

[63]  R. H. Moore,et al.  Molar mass, surface tension, and droplet growth kinetics of marine organics from measurements of CCN activity , 2008 .

[64]  J. Curry,et al.  Sensitivity of modeled arctic mixed‐phase stratocumulus to cloud condensation and ice nuclei over regionally varying surface conditions , 2008 .

[65]  H. Morrison,et al.  Modeling Supersaturation and Subgrid-Scale Mixing with Two-Moment Bulk Warm Microphysics , 2008 .

[66]  H. Leighton,et al.  Aerosol–Cloud Interactions in a Mesoscale Model. Part I: Sensitivity to Activation and Collision–Coalescence , 2008 .

[67]  Annmarie G. Carlton,et al.  Secondary organic aerosol yields from cloud‐processing of isoprene oxidation products , 2008 .

[68]  A. Kirkevåg,et al.  Aerosol-climate interactions in the CAM-Oslo atmospheric GCM and investigation of associated basic shortcomings , 2008 .

[69]  Shintaro Kawahara,et al.  J an 2 00 7 Super-Droplet Method for the Numerical Simulation of Clouds and Precipitation : a Particle-Based Microphysics Model Coupled with Non-hydrostatic Model , 2008 .

[70]  Ulrike Lohmann,et al.  Global anthropogenic aerosol effects on convective clouds in ECHAM5-HAM , 2007 .

[71]  C. Ruehl,et al.  How quickly do cloud droplets form on atmospheric particles , 2007 .

[72]  Steven J. Ghan,et al.  Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004 , 2007 .

[73]  A. Nenes,et al.  Parameterization of cloud droplet formation in large‐scale models: Including effects of entrainment , 2007 .

[74]  J. Penner,et al.  Investigation of the first and second aerosol indirect effects using data from the May 2003 Intensive Operational Period at the Southern Great Plains , 2007 .

[75]  U. Lohmann,et al.  Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM , 2007 .

[76]  Graham Feingold,et al.  On the source of organic acid aerosol layers above clouds. , 2007, Environmental science & technology.

[77]  J. Seinfeld,et al.  Cloud condensation nuclei prediction error from application of Kohler theory: Importance for the aerosol indirect effect , 2007 .

[78]  J. Seinfeld,et al.  Aerosol–cloud drop concentration closure for clouds sampled during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign , 2007 .

[79]  C. Bretherton,et al.  Cloud-Resolving Model Simulations of KWAJEX: Model Sensitivities and Comparisons with Satellite and Radar Observations , 2007 .

[80]  Paul Ginoux,et al.  Modeling the interactions between aerosols and liquid water clouds with a self-consistent cloud scheme in a general circulation model , 2007 .

[81]  Jiwen Fan,et al.  Simulations of cumulus clouds using a spectral microphysics cloud‐resolving model , 2007 .

[82]  S. Lance Quantifying compositional impacts of ambient aerosol on cloud droplet formation , 2007 .

[83]  Steven J. Ghan,et al.  Predicting cloud droplet number concentration in community atmosphere model (CAM)-Oslo , 2006 .

[84]  Steven J. Ghan,et al.  Impact of cloud-borne aerosol representation on aerosol direct and indirect effects , 2006 .

[85]  M. Petters,et al.  A single parameter representation of hygroscopic growth and cloud condensation nucleus activity , 2006 .

[86]  Johannes Quaas,et al.  Model intercomparison of indirect aerosol effects , 2006 .

[87]  A. Khain,et al.  Dependence of droplet concentration on aerosol conditions in different cloud types: Application to droplet concentration parameterization of aerosol conditions , 2006 .

[88]  Aerosol activation and cloud processing in the global aerosol-climate model ECHAM5-HAM , 2006 .

[89]  Judith A. Curry,et al.  Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic, and power laws , 2006 .

[90]  G. Feingold,et al.  Large-Eddy Simulations of Trade Wind Cumuli: Investigation of Aerosol Indirect Effects , 2006 .

[91]  S. Menon,et al.  The radiative influence of aerosol effects on liquid-phase cumulus and stratiform clouds based on sensitivity studies with two climate models , 2006 .

[92]  V. Ramaswamy,et al.  A New Parameterization of Cloud Droplet Activation Applicable to General Circulation Models , 2006 .

[93]  Joyce E. Penner,et al.  Uncertainty analysis for estimates of the first indirect aerosol effect , 2005 .

[94]  J. Seinfeld,et al.  Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL‐FACE and CSTRIPE , 2005 .

[95]  S. Ghan,et al.  Parallel simulations of aerosol influence on clouds using cloud‐resolving and single‐column models , 2005 .

[96]  Athanasios Nenes,et al.  Continued development of a cloud droplet formation parameterization for global climate models , 2005 .

[97]  J. Curry,et al.  A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description , 2005 .

[98]  Eric A. Smith,et al.  Physical Characterization of Tropical Oceanic Convection Observed in KWAJEX , 2005 .

[99]  S. Emori,et al.  Simulation of climate response to aerosol direct and indirect effects with aerosol transport‐radiation model , 2005 .

[100]  A. Pokrovsky,et al.  Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications , 2004 .

[101]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[102]  J. Seinfeld,et al.  Evidence for the Predominance of Mid-Tropospheric Aerosols as Subtropical Anvil Cloud Nuclei , 2004, Science.

[103]  J. Seinfeld,et al.  Chemical Amplification (or Dampening) of the Twomey Effect: Conditions Derived from Droplet Activation Theory , 2004 .

[104]  S. Ghan,et al.  Parameterization of the influence of organic surfactants on aerosol activation , 2004 .

[105]  William R. Cotton,et al.  A Large-Droplet Mode and Prognostic Number Concentration of Cloud Droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part I: Module Descriptions and Supercell Test Simulations , 2004 .

[106]  J. Seinfeld,et al.  Parameterization of cloud droplet formation in global climate models , 2003 .

[107]  P. Chuang Measurement of the timescale of hygroscopic growth for atmospheric aerosols , 2003 .

[108]  J. Seinfeld,et al.  Modification of aerosol mass and size distribution due to aqueous‐phase SO2 oxidation in clouds: Comparisons of several models , 2003 .

[109]  A. Khain,et al.  Thermodynamic factors influencing bimodal spectrum formation in cumulus clouds , 2003 .

[110]  D. Randall,et al.  Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities , 2003 .

[111]  J. Penner,et al.  Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations , 2002 .

[112]  J. Seinfeld,et al.  Can chemical effects on cloud droplet number rival the first indirect effect? , 2002 .

[113]  S. Ghan,et al.  A parameterization of aerosol activation 3. Sectional representation , 2002 .

[114]  Alexander Khain,et al.  Effects of in‐cloud nucleation and turbulence on droplet spectrum formation in cumulus clouds , 2002 .

[115]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[116]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[117]  S. Ghan,et al.  Kinetic limitations on cloud droplet formation and impact on cloud albedo , 2001 .

[118]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[119]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[120]  K. Suhre,et al.  On the parameterization of activation spectra from cloud condensation nuclei microphysical properties , 2000 .

[121]  P. Rasch,et al.  Correction to “A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3” by P. J. Rasch et al. , 2000 .

[122]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[123]  P. Rasch,et al.  A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[124]  M. Khairoutdinov,et al.  A Large Eddy Simulation Model with Explicit Microphysics: Validation against Aircraft Observations of a Stratocumulus-Topped Boundary Layer , 1999 .

[125]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[126]  J. Cohard,et al.  Extending Twomey’s Analytical Estimate of Nucleated Cloud Droplet Concentrations from CCN Spectra , 1998 .

[127]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[128]  J. Seinfeld,et al.  Size- and Composition-Resolved Externally Mixed Aerosol Model , 1998 .

[129]  J. Seinfeld,et al.  Atmospheric Chemistry and Physics: From Air Pollution to Climate Change , 1998 .

[130]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[131]  U. Lohmann,et al.  Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM , 1997 .

[132]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[133]  A. Slingo,et al.  Predicting cloud‐droplet effective radius and indirect sulphate aerosol forcing using a general circulation model , 1996 .

[134]  B. Stevens,et al.  Spurious production of cloud-edge supersaturations by Eulerian models , 1996 .

[135]  A. Korolev,et al.  The Influence of Supersaturation Fluctuations on Droplet Size Spectra Formation , 1995 .

[136]  Olivier Boucher,et al.  The sulfate‐CCN‐cloud albedo effect , 1995 .

[137]  S. Ghan,et al.  A parameterization of cloud droplet nucleation. Part II: Multiple aerosol types , 1995 .

[138]  D. L. Roberts,et al.  A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols , 1994, Nature.

[139]  D. W. Johnson,et al.  The Measurement and Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds , 1994 .

[140]  A. Korolev A study of bimodal droplet size distributions in stratiform clouds , 1994 .

[141]  G. Isaac,et al.  On the relationship between sulfate and cloud droplet number concentrations , 1994 .

[142]  J. Seinfeld,et al.  On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols , 1994 .

[143]  S. Ghan,et al.  A parameterization of cloud droplet nucleation part I: single aerosol type , 1993 .

[144]  Zones of increased and decreased droplet concentration in stratiform clouds , 1993 .

[145]  C. C. Chuang,et al.  A parameterization of cloud droplet nucleation , 1993 .

[146]  George A. Isaac,et al.  The relationship between cloud droplet number concentrations and anthropogenic pollution : observations and climatic implications , 1992 .

[147]  Yefim L. Kogan,et al.  The simulation of a convective cloud in a 3-D model with explicit microphysics , 1991 .

[148]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[149]  G. M. Frick,et al.  Effect of nonprecipitating clouds on the aerosol size distribution in the marine boundary layer , 1986 .

[150]  M. Mozurkewich,et al.  Aerosol Growth and the Condensation Coefficient for Water: A Review , 1986 .

[151]  W. Hall,et al.  A Theoretical Study of the Wet Removal of Atmospheric Pollutants. Part I: The Redistribution of Aerosol Particles Captured through Nucleation and Impaction Scavenging by Growing Cloud Drops , 1985 .

[152]  R. Charlson,et al.  On the efficiency of nucleation scavenging , 1984 .

[153]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[154]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .

[155]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[156]  Gottfried Hänel,et al.  The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air , 1976 .

[157]  S. Twomey Pollution and the Planetary Albedo , 1974 .

[158]  Terry L. Clark On Modelling Nucleation and Condensation Theory in Eulerian Spatial Domain , 1974 .

[159]  J. W. Fitzgerald Effect of Aerosol Composition on Cloud Droplet Size Distribution: A Numerical Study , 1974 .

[160]  J. Warner The Microstructure of Cumulus Cloud: Part IV. The Effect on the Droplet Spectrum of Mixing Between Cloud and Environment , 1973 .

[161]  N. Fukuta,et al.  Kinetics of Hydrometeor Growth from a Vapor-Spherical Model , 1970 .

[162]  B. J. Mason,et al.  Cloud-droplet growth by condensation in cumulus , 1962 .

[163]  R. H. Sabersky,et al.  Evaporation and droplet growth in gaseous media. , 2013 .

[164]  S. Twomey,et al.  The nuclei of natural cloud formation part II: The supersaturation in natural clouds and the variation of cloud droplet concentration , 1959 .

[165]  Wallace E. Howell,et al.  THE GROWTH OF CLOUD DROPS IN UNIFORMLY COOLED AIR , 1949 .