Lignocellulosic residues: biodegradation and bioconversion by fungi.

The ability of fungi to degrade lignocellulosic materials is due to their highly efficient enzymatic system. Fungi have two types of extracellular enzymatic systems; the hydrolytic system, which produces hydrolases that are responsible for polysaccharide degradation and a unique oxidative and extracellular ligninolytic system, which degrades lignin and opens phenyl rings. Lignocellulosic residues from wood, grass, agricultural, forestry wastes and municipal solid wastes are particularly abundant in nature and have a potential for bioconversion. Accumulation of lignocellulosic materials in large quantities in places where agricultural residues present a disposal problem results not only in deterioration of the environment but also in loss of potentially valuable material that can be used in paper manufacture, biomass fuel production, composting, human and animal feed among others. Several novel markets for lignocellulosic residues have been identified recently. The use of fungi in low cost bioremediation projects might be attractive given their lignocellulose hydrolysis enzyme machinery.

[1]  Rl Howard,et al.  Lignocellulose biotechnology: issues of bioconversion and enzyme production , 2003 .

[2]  J. Dahiya Fungal degradation of lignin , 1989 .

[3]  Carlos Martín,et al.  Characterisation of Agricultural and Agro-Industrial Residues as Raw Materials for Ethanol Production , 2006 .

[4]  J. Pérez,et al.  Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview , 2002, International microbiology : the official journal of the Spanish Society for Microbiology.

[5]  T. E. Cloete,et al.  Lignocellulose biodegradation: Fundamentals and applications , 2002 .

[6]  G. T. Tsao,et al.  Ethanol production from renewable resources. , 1999, Advances in biochemical engineering/biotechnology.

[7]  U. Temp,et al.  The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase , 1996, Applied and environmental microbiology.

[8]  Ashutosh Kumar Singh,et al.  Microorganisms and enzymes involved in the degradation of plant fiber cell walls. , 1997, Advances in biochemical engineering/biotechnology.

[9]  Douglas E. Eveleigh,et al.  Characteristics of fungal cellulases , 1991 .

[10]  R. ten Have,et al.  Oxidative mechanisms involved in lignin degradation by white-rot fungi. , 2001, Chemical reviews.

[11]  J. Garcia-Guinea,et al.  An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. , 2007, FEMS microbiology letters.

[12]  John E. Haight,et al.  Cell wall alterations in loblolly pine wood decayed by the white-rot fungus, Ceriporiopsis subvermispora , 1997 .

[13]  M. Cerdeiras,et al.  Biodegradation of agroindustrial wastes by Pleurotus spp for its use as ruminant feed , 2006 .

[14]  Peter McKendry,et al.  Energy production from biomass (Part 1): Overview of biomass. , 2002, Bioresource technology.

[15]  A. Tkachenko,et al.  Polyamines as Modulators of Gene Expression under Oxidative Stress in Escherichia coli , 2003, Biochemistry (Moscow).

[16]  K. Eriksson,et al.  Laccase-less mutants of the white-rot fungus Pycnoporus cinnabarinus cannot delignify kraft pulp , 1998 .

[17]  M. Gryndler,et al.  Modifications of degradation-resistant soil organic matter by soil saprobic microfungi , 2006 .

[18]  P. Suominen,et al.  Enhanced Production of Trichoderma reesei Endoglucanases and Use of the New Cellulase Preparations in Producing the Stonewashed Effect on Denim Fabric , 2002, Applied and Environmental Microbiology.

[19]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[20]  J. S. Horton,et al.  A mushroom-inducing DNA sequence isolated from the Basidiomycete, Schizophyllum commune. , 1991, Genetics.

[21]  N. Durán,et al.  Lignin biodegradation by the ascomyceteChrysonilia sitophila , 1997, Applied biochemistry and biotechnology.

[22]  M. Rabinovich,et al.  Dedicated to the memory of I.V. Berezin and R.V. Feniksova Microbial Cellulases (Review) , 2002, Applied Biochemistry and Microbiology.

[23]  C. Wyman,et al.  Features of promising technologies for pretreatment of lignocellulosic biomass. , 2005, Bioresource technology.

[24]  M. Galbe,et al.  Production of ethanol from biomass - Research in Sweden , 2005 .

[25]  L. Lynd,et al.  Fuel Ethanol from Cellulosic Biomass , 1991, Science.

[26]  Trevor C. Charles,et al.  Cellobiose Dehydrogenase is Essential for Wood Invasion and Nonessential for Kraft Pulp Delignification by Trametes versicolor , 2001 .

[27]  J. C. Cardona,et al.  PRODUCTION OF LIGNINOLYTIC ENZYMES FROM BASIDIOMYCETE FUNGI ON LIGNOCELLULOSIC MATERIALS , 2006 .

[28]  B. V. Babu Biomass pyrolysis: a state‐of‐the‐art review , 2008 .

[29]  Geoffrey Daniel,et al.  Use of electron microscopy for aiding our understanding of wood biodegradation , 1994 .

[30]  C. A. Reddy,et al.  Demonstration of Laccase in the White Rot Basidiomycete Phanerochaete chrysosporium BKM-F1767 , 1995, Applied and environmental microbiology.

[31]  Katherine H. Huang,et al.  Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78 , 2004, Nature Biotechnology.

[32]  M. Rabinovich,et al.  The Structure and Mechanism of Action of Cellulolytic Enzymes , 2002, Biochemistry (Moscow).

[33]  R. Rowell Opportunities for Lignocellulosic Materials and Composites , 1992 .

[34]  U. Temp,et al.  Laccase-Producing White-Rot Fungus Lacking Lignin Peroxidase and Manganese Peroxidase: Role of Laccase in Lignin Biodegradation , 1996 .

[35]  T. Jeffries,et al.  Nutritional Regulation of Lignin Degradation by Phanerochaete chrysosporium , 1981, Applied and environmental microbiology.

[36]  Nasib Qureshi,et al.  Butanol Production from Corn Fiber Xylan Using Clostridium acetobutylicum , 2006, Biotechnology progress.

[37]  Faison Bd,et al.  Relationship Between Lignin Degradation and Production of Reduced Oxygen Species by Phanerochaete chrysosporium , 1983, Applied and environmental microbiology.

[38]  C. White,et al.  Wood and cellulosics: Industrial utilization. Biotechnology. Structure and properties: Edited by J. F. Kennedy, G. O. Phillips, P. A. Williams. Ellis Horwood, Chichester, 1987, xi + 664 pp. ISBN 0 7458 01137. Price: £69.50 , 1988 .

[39]  Jean-Michel Savoie,et al.  Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: changes in the production of some lignocellulolytic enzymes , 2002 .

[40]  D. Cullen,et al.  9 Enzymology and Molecular Genetics of Wood Degradation by White-Rot Fungi , 1998 .

[41]  M. Cariello,et al.  Endogenous microorganisms inoculant to speed up the composting process of urban swage sludge , 2007 .

[42]  Walter Steiner,et al.  Production of Trichoderma cellulase in laboratory and pilot scale , 1991 .

[43]  Yazhong Xiao,et al.  High production of laccase by a new basidiomycete, Trametes sp , 2007, Biotechnology Letters.

[44]  M. Künzler,et al.  Targeted Gene Silencing in the Model Mushroom Coprinopsis cinerea (Coprinus cinereus) by Expression of Homologous Hairpin RNAs , 2006, Eukaryotic Cell.

[45]  James D. McMillan,et al.  Pretreatment of lignocellulosic biomass , 1994 .

[46]  S. W. Kim,et al.  Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs , 2002, Applied Microbiology and Biotechnology.

[47]  K. Jensen,et al.  Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase , 1996, Applied and environmental microbiology.

[48]  J. Zeikus,et al.  Ligninolytic enzyme system of Phanaerochaete chrysosporium: synthesized in the absence of lignin in response to nitrogen starvation , 1978, Journal of bacteriology.

[49]  G. M. Martínez,et al.  Actividad fibrolítica de enzimas producidas por Trametes sp. EUM1, Pleurotus ostreatus IE8 y Aspergillus niger AD96.4 en fermentación sólida , 2007 .

[50]  M. Rabinovich,et al.  Fungal Decomposition of Natural Aromatic Structures and Xenobiotics: A Review , 2004, Applied Biochemistry and Microbiology.

[51]  C. S. Benimeli,et al.  Lindane uptake and degradation by aquatic Streptomyces sp. strain M7 , 2007 .

[52]  M. Gelpke,et al.  Manganese peroxidase. , 2000, Metal ions in biological systems.

[53]  Jay J. Cheng,et al.  Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. , 2005, Bioresource technology.

[54]  E. Record,et al.  Highly Efficient Production of Laccase by the Basidiomycete Pycnoporus cinnabarinus , 2004, Applied and Environmental Microbiology.

[55]  Colin Ratledge,et al.  Biochemistry of microbial degradation , 2012, Springer Netherlands.

[56]  F. Tjerneld,et al.  Purification and characterization of five cellulases and one xylanase from Penicillium brasilianum IBT 20888 , 2003 .

[57]  D. Kilburn,et al.  Cellobiohydrolase B, a second exo-cellobiohydrolase from the cellulolytic bacterium Cellulomonas fimi. , 1995, The Biochemical journal.

[58]  Richard T. Elander,et al.  Survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol , 1997 .

[59]  José C del Río,et al.  Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. , 2005, International microbiology : the official journal of the Spanish Society for Microbiology.

[60]  F. Rombouts,et al.  Adsorption and kinetic behavior of purified endoglucanases and exoglucanases from Trichoderma viride , 1987, Biotechnology and bioengineering.

[61]  Ángel T. Martínez,et al.  Molecular biology and structure-function of lignin-degrading heme peroxidases , 2002 .

[62]  C. Aguiar Biodegradación de celulosa de bagazo de caña de azúcar por hongos celulolíticos , 2001 .

[63]  A. Gutiérrez,et al.  Anisaldehyde production and aryl-alcohol oxidase and dehydrogenase activities in ligninolytic fungi of the genus Pleurotus , 1994, Applied and environmental microbiology.

[64]  E. Kalmış,et al.  Cultivation of two Pleurotus species on wheat straw substrates containing olive mill waste water , 2004 .

[65]  S. Ralph,et al.  New Insights into the Ligninolytic Capability of a Wood Decay Ascomycete , 2007, Applied and Environmental Microbiology.

[66]  F. Zimbardi,et al.  Steam explosion of straw in batch and continuous systems , 1999 .

[67]  M. Kuwahara,et al.  Molecular analysis of a Bjerkandera adusta lignin peroxidase gene , 1991, Applied Microbiology and Biotechnology.

[68]  H. Gilbert,et al.  A modular cinnamoyl ester hydrolase from the anaerobic fungus Piromyces equi acts synergistically with xylanase and is part of a multiprotein cellulose-binding cellulase-hemicellulase complex. , 1999, The Biochemical journal.

[69]  Yeong-Suk Kim,et al.  The brown-rot basidiomycete Fomitopsis palustris has the endo-glucanases capable of degrading microcrystalline cellulose. , 2007, Journal of microbiology and biotechnology.

[70]  A. Mills,et al.  Manual of environmental microbiology. , 2007 .

[71]  D. Cullen,et al.  Enzymology and Molecular Biology of Lignin Degradation , 1996 .

[72]  Ye Sun,et al.  Hydrolysis of lignocellulosic materials for ethanol production: a review. , 2002, Bioresource technology.

[73]  A. Çabuk,et al.  Biodegradation of Cyanide by a White Rot Fungus, Trametes versicolor , 2006, Biotechnology Letters.

[74]  L. Ljungdahl,et al.  Feruloyl and p-coumaroyl esterase from anaerobic fungi in relation to plant cell wall degradation , 1990, Applied Microbiology and Biotechnology.

[75]  D. Cullen,et al.  Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. , 2007, Fungal genetics and biology : FG & B.

[76]  C. J. Hurst,et al.  Use of Fungi Biodegradation , 2002 .

[77]  K. Li,et al.  Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus , 2002, Applied Microbiology and Biotechnology.

[78]  Satyawati Sharma,et al.  Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. , 2002, Bioresource technology.

[79]  F. Guillén,et al.  Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. , 1997, Archives of biochemistry and biophysics.

[80]  K. Jensen,et al.  Manganese-Dependent Cleavage of Nonphenolic Lignin Structures by Ceriporiopsis subvermispora in the Absence of Lignin Peroxidase , 1997, Applied and environmental microbiology.

[81]  Xiujin Li,et al.  Oyster mushroom cultivation with rice and wheat straw. , 2002, Bioresource technology.

[82]  John G. Anderson,et al.  Bioprocessing of lignocelluloses , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[83]  M. Hofrichter,et al.  Mineralization of 14C-labelled synthetic lignin and extracellular enzyme activities of the wood-colonizing ascomycetes Xylaria hypoxylon and Xylaria polymorpha , 2005, Applied Microbiology and Biotechnology.

[84]  A. Matuszewska,et al.  Biodegradation of lignin by white rot fungi. , 1999, Fungal genetics and biology : FG & B.

[85]  F. Guillén,et al.  Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. , 1992, European journal of biochemistry.

[86]  T. Jeffries Biodegradation of lignin and hemicelluloses , 1994 .

[87]  H. Hasan Patulin and aflatoxin in brown rot lesion of apple fruits and their regulation , 2000 .

[88]  T. Kent Kirk,et al.  Requirement for a Growth Substrate During Lignin Decomposition by Two Wood-Rotting Fungi , 1976, Applied and environmental microbiology.

[89]  G. Waksman,et al.  Common amino acid domain among endopolygalacturonases of ascomycete fungi , 1990, Applied and environmental microbiology.

[90]  Jikai Liu,et al.  Xylactam, a New Nitrogen-Containing Compound from the Fruiting Bodies of Ascomycete Xylaria euglossa. , 2005 .

[91]  K. Okamoto,et al.  Biosynthesis of p-anisaldehyde by the white-rot basidiomycete Pleurotus ostreatus. , 2002, Journal of bioscience and bioengineering.

[92]  Y. Honda,et al.  Isolation of cDNA and genomic fragments encoding the major manganese peroxidase isozyme from the white rot basidiomycetePleurotus ostreatus , 2000, Journal of Wood Science.

[93]  J. Avalos,et al.  ent-Kaurene and squalene synthesis in Fusarium fujikuroi cell-free extracts. , 2000, Phytochemistry.

[94]  R. Blanchette Delignification by wood-decay fungi , 1991 .

[95]  D. Royse Recycling of spent shiitake substrate for production of the oyster mushroom, Pleurotus sajor-caju , 1992, Applied Microbiology and Biotechnology.

[96]  Evaluation of Lignocellulosic Wastes for Production of Edible Mushrooms , 2008, Applied biochemistry and biotechnology.

[97]  C. Aguiar BIODEGRADATION OF THE CELLULOSE FROM SUGARCANE BAGASSE BY FUNGAL CELLULASE BIODEGRADACIÓN DE CELULOSA DE BAGAZO DE CAÑA DE AZÚCAR POR HONGOS CELULOLÍTICOS BIODEGRADACIÓN DE CELULOSA DE BAGAZO DE CAÑA DE AZUCRE POR FUNGOS CELULOLÍTICOS , 2001 .

[98]  K. Hammel,,et al.  Fungal Degradation of Lignin , 1997 .

[99]  D. Stewart,et al.  Sisal fibres and their constituent non-cellulosic polymers , 1997 .

[100]  BIODEGRADACIÓN DE RESIDUOS URBANOS LIGNOCELULÓSICOS POR Pleurotus , 2003 .

[101]  C. Cameselle,et al.  Enhanced ligninolytic enzyme production and degrading capability of Phanerochaete chrysosporium and Trametes versicolor , 2003 .

[102]  H. Shinoyama,et al.  Lignin-degrading activity of edible mushroom , 2007 .

[103]  Anoop Singh,et al.  Ethanol as an alternative fuel from agricultural, industrial and urban residues , 2007 .