THE BRACHISTOCHRONE PROBLEM AND MODERN CONTROL THEORY
暂无分享,去创建一个
[1] David Eugene Smith,et al. A source book in mathematics , 1930 .
[2] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[3] Bernard Bonnard,et al. Transitivity of families of invariant vector fields on the semidirect products of Lie groups , 1982 .
[4] Héctor J. Sussmann,et al. A strong version of the maximum principle under weak hypotheses , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.
[5] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[6] Velimir Jurdjevic,et al. Control systems on semi-simple Lie groups and their homogeneous spaces , 1981 .
[7] S. Brendle,et al. Calculus of Variations , 1927, Nature.
[8] Singiresu S. Rao,et al. Optimization Theory and Applications , 1980, IEEE Transactions on Systems, Man, and Cybernetics.
[9] E. Beltrami,et al. Saggio di interpretazione della geometria Non-Euclidea , 1868 .
[10] Degenerate linear systems with quadratic cost under finiteness assumptions , 1989 .
[11] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[12] H. Hermes,et al. Foundations of optimal control theory , 1968 .
[13] V. Jurdjevic,et al. Control systems subordinated to a group action: Accessibility , 1981 .
[14] P. Wallis,et al. A Source Book in Mathematics, 1200-1800 , 1971, The Mathematical Gazette.
[15] B. Jakubczyk,et al. Geometry of feedback and optimal control , 1998 .
[16] Michael Guillen,et al. Five Equations That Changed the World: The Power and Poetry of Mathematics , 1995 .
[17] G. Lochak. La géométrisation de la physique , 1984 .
[18] Jan C. Willems,et al. 300 years of optimal control: From the brachystochrone to the maximum principle , 1997 .
[19] H. Sussmann. A nonsmooth hybrid maximum principle , 1999 .
[20] H. Sussmann,et al. Resultats recents sur les courbes optimales , 2000 .
[21] Héctor J. Sussmann,et al. Multidifferential Calculus: Chain Rule, Open Mapping and Transversal Intersection Theorems , 1998 .
[22] Héctor J. Sussmann,et al. Geometry and optimal control , 1998 .
[23] G. Hardy. A Source Book in Mathematics , 1930, Nature.
[24] F. Clarke. The Maximum Principle under Minimal Hypotheses , 1976 .
[25] E. T. Bell,et al. Men of Mathematics , 1937, Nature.
[26] J. Dow. Elements of the Calculus of Variations , 1999 .
[27] A remark on the Bellman equation for optimal control problems with exit times and noncoercing dynamics , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).
[28] Héctor J. Sussmann,et al. New theories of set-valued differentials and new versions of the maximum principle of optimal control theory , 2001 .
[29] Arjan van der Schaft,et al. Non-linear dynamical control systems , 1990 .
[30] John Stillwell,et al. Sources of Hyperbolic Geometry , 1996 .
[31] H. Sussmann,et al. Transversality conditions and a strong maximum principle for systems of differential inclusions , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[32] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[33] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .