Optimal non-dissipative discontinuous Galerkin methods for Maxwell's equations in Drude metamaterials

Simulation of electromagnetic wave propagation in metamaterials leads to more complicated time domain Maxwells equations than the standard Maxwells equations in free space. In this paper, we develop and analyze a non-dissipative discontinuous Galerkin (DG) method for solving the Maxwells equations in Drude metamaterials. Previous discontinuous Galerkin methods in the literature for electromagnetic wave propagation in metamaterials were either non-dissipative but sub-optimal, or dissipative and optimal. Our method uses a different and simple choice of numerical fluxes, achieving provable non-dissipative stability and optimal error estimates simultaneously. We prove the stability and optimal error estimates for both semi- and fully discrete DG schemes, with the leap-frog time discretization for the fully discrete case. Numerical results are given to demonstrate that the DG method can solve metamaterial Maxwells equations effectively.

[1]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[2]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[3]  Shangyou Zhang,et al.  A Weak Galerkin Finite Element Method for the Maxwell Equations , 2013, Journal of Scientific Computing.

[4]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[5]  Boying Wu,et al.  Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations , 2015, Math. Comput..

[6]  Zhimin Zhang,et al.  Error analysis of a discontinuous Galerkin method for Maxwell equations in dispersive media , 2010, J. Comput. Phys..

[7]  Chi-Wang Shu,et al.  Stability Analysis and A Priori Error Estimates of the Third Order Explicit Runge-Kutta Discontinuous Galerkin Method for Scalar Conservation Laws , 2010, SIAM J. Numer. Anal..

[8]  Chi-Wang Shu,et al.  Locally divergence-free discontinuous Galerkin methods for the Maxwell equations , 2004, Journal of Computational Physics.

[9]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[10]  Pingwen Zhang,et al.  Discontinuous Galerkin methods for dispersive and lossy Maxwell's equations and PML boundary conditions , 2004 .

[11]  Eric T. Chung,et al.  A staggered discontinuous Galerkin method for wave propagation in media with dielectrics and meta-materials , 2013, J. Comput. Appl. Math..

[12]  R. Mittra,et al.  FDTD Modeling of Metamaterials: Theory and Applications , 2008 .

[13]  D. Schötzau,et al.  Interior penalty discontinuous Galerkin method for Maxwell's equations: optimal L2-norm error estimates , 2007 .

[14]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[15]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for Wave Propagation , 2006, SIAM J. Numer. Anal..

[16]  P. Houston,et al.  Discontinuous Galerkin computation of the Maxwell eigenvalues on simplicial meshes , 2007 .

[17]  Eric T. Chung,et al.  Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids , 2013, J. Comput. Phys..

[18]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[19]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[20]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[21]  Eric T. Chung,et al.  Optimal Discontinuous Galerkin Methods for the Acoustic Wave Equation in Higher Dimensions , 2009, SIAM J. Numer. Anal..

[22]  S. Lanteri,et al.  Convergence of a Discontinuous Galerkin scheme for the mixed time domain Maxwell's equations in dispersive media. , 2013 .

[23]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[24]  Yulong Xing,et al.  Energy conserving local discontinuous Galerkin methods for wave propagation problems , 2013 .

[25]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for High-Order Time-Dependent Partial Differential Equations , 2009 .

[26]  Jiajia Waters,et al.  An implicit leap-frog discontinuous Galerkin method for the time-domain Maxwell’s equations in metamaterials , 2012 .

[27]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[28]  Yunqing Huang,et al.  Time-Domain Finite Element Methods for Maxwell's Equations in Metamaterials , 2012 .

[29]  Yulong Xing,et al.  Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media , 2014, J. Comput. Phys..

[30]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[31]  Bo Dong,et al.  Analysis of a Local Discontinuous Galerkin Method for Linear Time-Dependent Fourth-Order Problems , 2009, SIAM J. Numer. Anal..

[32]  Aihua Wood,et al.  Finite Element Analysis for Wave Propagation in Double Negative Metamaterials , 2007, J. Sci. Comput..

[33]  Jichun Li,et al.  Development of discontinuous Galerkin methods for Maxwell's equations in metamaterials and perfectly matched layers , 2011, J. Comput. Appl. Math..

[34]  Ronald H. W. Hoppe,et al.  Finite element methods for Maxwell's equations , 2005, Math. Comput..

[35]  Maria Kafesaki,et al.  Backward wave radiation from negative permittivity waveguides and its use for THz subwavelength imaging. , 2012, Optics express.

[36]  L. Fezoui,et al.  Convergence and stability of a discontinuous galerkin time-domain method for the 3D heterogeneous maxwell equations on unstructured meshes , 2005 .

[37]  Chunguang Xia,et al.  Broadband acoustic cloak for ultrasound waves. , 2010, Physical review letters.

[38]  Raj Mittra,et al.  FDTD Modeling of Metamaterials , 2008 .

[39]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[40]  Chi-Wang Shu,et al.  Analysis of the local discontinuous Galerkin method for the drift-diffusion model of semiconductor devices , 2015, Science China Mathematics.

[41]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[42]  Jan S. Hesthaven,et al.  Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials , 2014, J. Comput. Phys..