Proofs and Retributions, Or: Why Sarah Can’t Take Limits

The small, the tiny, and the infinitesimal (to quote Paramedic) have been the object of both fascination and vilification for millenia. One of the most vitriolic reviews in mathematics was that written by Errett Bishop about Keisler’s book Elementary Calculus: an Infinitesimal Approach. In this skit we investigate both the argument itself, and some of its roots in Bishop George Berkeley’s criticism of Leibnizian and Newtonian Calculus. We also explore some of the consequences to students for whom the infinitesimal approach is congenial. The casual mathematical reader may be satisfied to read the text of the five act play, whereas the others may wish to delve into the 130 footnotes, some of which contain elucidation of the mathematics or comments on the history.

[1]  Alexandre V. Borovik,et al.  An Integer Construction of Infinitesimals: Toward a Theory of Eudoxus Hyperreals , 2012, Notre Dame J. Formal Log..

[2]  Mikhail G. Katz,et al.  Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond , 2012, 1205.0174.

[3]  Mikhail G. Katz,et al.  Meaning in Classical Mathematics: Is it at Odds with Intuitionism? , 2011, 1110.5456.

[4]  Mikhail G. Katz,et al.  Commuting and Noncommuting Infinitesimals , 2013, Am. Math. Mon..

[5]  M. Beeson Foundations of Constructive Mathematics: Metamathematical Studies , 1985 .

[6]  Vladimir Kanovei,et al.  Tools, Objects, and Chimeras: Connes on the Role of Hyperreals in Mathematics , 2012, 1211.0244.

[7]  John Weiner,et al.  Letter to the Editor , 1992, SIGIR Forum.

[8]  Joseph W. Dauben,et al.  Abraham Robinson: The Creation of Nonstandard Analysis, A Personal and Mathematical Odyssey , 1995 .

[9]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[10]  A. Connes Noncommutative geometry and reality , 1995 .

[11]  H. Keisler Elementary Calculus: An Infinitesimal Approach , 1976 .

[12]  Ross Gagliano,et al.  Review of , 2006, UBIQ.

[13]  Archive for History of Exact Sciences , 1960, Nature.

[14]  Mikhail G. Katz,et al.  Infinitesimals, Imaginaries, Ideals, and Fictions , 2012 .

[15]  Penelope Maddy The Roots of Contemporary Platonism , 1989, J. Symb. Log..

[16]  Mikhail G. Katz,et al.  From discrete arithmetic to arithmetic of the continuum , 2013 .

[17]  The correctness of Euler's method for the factorization of the sine function into an infinite product , 1988 .

[18]  Mikhail G. Katz,et al.  A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography , 2011, 1104.0375.

[19]  A. Heyting,et al.  Intuitionism: An introduction , 1956 .

[20]  Mikhail G. Katz,et al.  Leibniz's laws of continuity and homogeneity , 2012, 1211.7188.

[21]  Geoffrey Hellman,et al.  Mathematical Constructivism in Spacetime , 1998, The British Journal for the Philosophy of Science.

[22]  Leonard Euler,et al.  Introduction to Analysis of the Infinite: Book I , 1988, The Mathematical Gazette.

[23]  Henk J. M. Bos,et al.  Differentials, higher-order differentials and the derivative in the Leibnizian calculus , 1974 .

[24]  Dan Simon,et al.  From Here to Infinity , 2001 .

[25]  Patrick Reeder Internal Set Theory and Euler's Introductio in Analysin Infinitorum , 2013 .

[26]  H. Weyl,et al.  Über die neue Grundlagenkrise der Mathematik , 1921 .

[27]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[28]  Alexandre Borovik,et al.  Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus , 2011, 1108.2885.

[29]  Errett Bishop,et al.  Mathematics as a Numerical Language , 1970 .

[30]  The Education of a Pure Mathematician , 1999 .

[31]  Solomon Feferman,et al.  Relationships between Constructive, Predicative and Classical Systems of Analysis , 2000 .

[32]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[33]  Mikhail G. Katz,et al.  Toward a Clarity of the Extreme Value Theorem , 2014, Logica Universalis.

[34]  Mikhail G. Katz,et al.  Ten Misconceptions from the History of Analysis and Their Debunking , 2012, 1202.4153.

[35]  E. Hairer,et al.  Introduction to Analysis of the Infinite , 2008 .

[36]  A. Robinson From a formalist's point of view , 1969 .

[37]  Alasdair Urquhart Mathematics and Physics: Strategies of Assimilation , 2008 .

[38]  E. Bishop Differentiable manifolds in complex Euclidean space , 1965 .

[39]  Sam Sanders Algorithm and proof as Ω-invariance and transfer: A new model of computation in nonstandard analysis , 2012, DCM.

[40]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[41]  I. Lakatos,et al.  Proofs and Refutations: Frontmatter , 1976 .

[42]  Does singleton set meet Zermelo-Fraenkel set theory with the axiom of choice? , 2011 .

[43]  Fred Richman,et al.  Interview with a constructive mathematician , 1996 .

[44]  M. McKinzie,et al.  Hidden lemmas in Euler's summation of the reciprocals of the squares , 1997 .

[45]  Paulo Ribenboim,et al.  Fermat's last theorem for amateurs , 1999 .

[46]  Saharon Shelah,et al.  A definable nonstandard model of the reals , 2004, J. Symb. Log..

[47]  H. Weber,et al.  Leopold Kronecker , 1893 .

[48]  Frederik Herzberg Stochastic Calculus with Infinitesimals , 2013, Lecture notes in mathematics.

[49]  Program FOUNDATIONS OF CONSTRUCTIVE MATHEMATICS , 2014 .

[50]  E. Bishop Foundations of Constructive Analysis , 2012 .

[51]  Paolo Mancosu,et al.  The Philosophy of Mathematical Practice , 2008 .

[52]  P. Zsombor-Murray,et al.  Elementary Mathematics from an Advanced Standpoint , 1940, Nature.

[53]  Fred Richman The last croak , 1987 .

[54]  Paul R. Halmos,et al.  I Want to be a Mathematician , 1985 .

[55]  Colin McLarty,et al.  What Does it Take to Prove Fermat's Last Theorem? Grothendieck and the Logic of Number Theory , 2010, The Bulletin of Symbolic Logic.

[56]  R. Ely Nonstandard Student Conceptions About Infinitesimals , 2010 .

[57]  Herbert Meschkowski Aus den Briefbüchern Georg Cantors , 1965 .

[58]  Edward Nelson Internal set theory: A new approach to nonstandard analysis , 1977 .

[59]  Paul R. Halmos,et al.  I Want to Be A Mathematician: An Automathography , 1986 .

[60]  Errett Bishop The crisis in contemporary mathematics , 1975 .

[61]  T. Tho EQUIVOCATION IN THE FOUNDATIONS OF LEIBNIZ’S INFINITESIMAL FICTIONS , 2012 .

[62]  W. A. J. Luxemburg,et al.  Non-Standard Analysis: Lectures on A. Robinson's Theory of Infinitesimals and Infinitely Large Numbers , 1966 .

[63]  David Sherry,et al.  The wake of Berkeley's analyst: Rigor mathematicae? , 1987 .

[64]  A. Robinson Numbers and Models , Standard and Nonstandard , 2010 .

[65]  Karel Hrbacek,et al.  Axiomatic foundations for Nonstandard Analysis , 1978 .

[66]  Jean Francois Richard Les Principes des mathématiques et le problème des ensembles , 1905 .

[67]  Emanuele Bottazzi,et al.  Fermat, Leibniz, Euler, and the gang: The true history of the concepts of limit and shadow , 2014, 1407.0233.

[68]  D. Herrmann Proofs And Refutations The Logic Of Mathematical Discovery , 2016 .

[69]  M. Schützenberger,et al.  Triangle of Thoughts , 2001 .

[70]  T. Mormann,et al.  Infinitesimals as an Issue of Neo-Kantian Philosophy of Science , 2013, HOPOS: The Journal of the International Society for the History of Philosophy of Science.

[71]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[72]  Geoffrey Hellman,et al.  Constructive mathematics and quantum mechanics: Unbounded operators and the spectral theorem , 1993, J. Philos. Log..

[73]  Piotr Blaszczyk,et al.  Is mathematical history written by the victors , 2013, 1306.5973.

[74]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[75]  Mikhail G. Katz,et al.  Almost Equal: the Method of Adequality from Diophantus to Fermat and Beyond , 2012, Perspectives on Science.

[76]  H. Keisler Foundations of infinitesimal calculus , 1976 .

[77]  Errett Bishop,et al.  Review: H. Jerome Keisler, Elementary calculus , 1977 .

[78]  Vladimir Kanovei,et al.  Nonstandard Analysis, Axiomatically , 2004 .

[79]  W. Luxemburg Non-Standard Analysis , 1977 .

[80]  Karin U. Katz,et al.  When is .999... less than 1? , 2010, The Mathematics Enthusiast.

[81]  T. Hill,et al.  Developing an Operations Strategy , 2009 .

[82]  David Tall,et al.  A Cauchy-Dirac Delta Function , 2012, 1206.0119.

[83]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[84]  R. Courant Differential and Integral Calculus , 1935 .

[85]  Richard Courant,et al.  Wiley Classics Library , 2011 .

[86]  N. S. Barnett,et al.  Private communication , 1969 .

[87]  Vladimir Kanovei,et al.  Problems of set-theoretic non-standard analysis , 2007 .

[88]  H. Billinge Did Bishop Have a Philosophy of Mathematics , 2003 .

[89]  Mikhail G. Katz,et al.  Zooming in on infinitesimal 1–.9.. in a post-triumvirate era , 2010, 1003.1501.