Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution

Constrained spherical deconvolution (CSD) is a new technique that, based on high‐angular resolution diffusion imaging (HARDI) MR data, estimates the orientation of multiple intravoxel fiber populations within regions of complex white matter architecture, thereby overcoming the limitations of the widely used diffusion tensor imaging (DTI) technique. One of its main applications is fiber tractography. The noisy nature of diffusion‐weighted (DW) images, however, affects the estimated orientations and the resulting fiber trajectories will be subject to uncertainty. The impact of noise can be large, especially for HARDI measurements, which employ relatively high b‐values. To quantify the effects of noise on fiber trajectories, probabilistic tractography was introduced, which considers multiple possible pathways emanating from one seed point, taking into account the uncertainty of local fiber orientations. In this work, a probabilistic tractography algorithm is presented based on CSD and the residual bootstrap. CSD, which provides accurate and precise estimates of multiple fiber orientations, is used to extract the local fiber orientations. The residual bootstrap is used to estimate fiber tract probability within a clinical time frame, without prior assumptions about the form of uncertainty in the data. By means of Monte Carlo simulations, the performance of the CSD fiber pathway uncertainty estimator is measured in terms of accuracy and precision. In addition, the performance of the proposed method is compared to state‐of‐the‐art DTI residual bootstrap tractography and to an existing probabilistic CSD tractography algorithm using clinical DW data. Hum Brain Mapp, 2011. © 2010 Wiley‐Liss, Inc.

[1]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[2]  M. Catani,et al.  Diffusion-based tractography in neurological disorders: concepts, applications, and future developments , 2008, The Lancet Neurology.

[3]  Jan Sijbers,et al.  ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data , 2009 .

[4]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[5]  Daniel C. Alexander,et al.  Using the Model-Based Residual Bootstrap to Quantify Uncertainty in Fiber Orientations From $Q$-Ball Analysis , 2009, IEEE Transactions on Medical Imaging.

[6]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[7]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[8]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[9]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[10]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[11]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[12]  Debashis Kushary,et al.  Bootstrap Methods and Their Application , 2000, Technometrics.

[13]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[14]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[15]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[16]  S. Schoenberg,et al.  Measurement of signal‐to‐noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters , 2007, Journal of magnetic resonance imaging : JMRI.

[17]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[18]  F. Calamante,et al.  How many diffusion gradient directions are required for HARDI , 2009 .

[19]  Timothy E. J. Behrens,et al.  Just pretty pictures? What diffusion tractography can add in clinical neuroscience , 2006, Current opinion in neurology.

[20]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[21]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[22]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[23]  L. Frank Anisotropy in high angular resolution diffusion‐weighted MRI , 2001, Magnetic resonance in medicine.

[24]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[25]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[26]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[27]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[28]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[29]  Derek K. Jones,et al.  Just how much data need to be collected for reliable bootstrap DT‐MRI? , 2006, Magnetic resonance in medicine.

[30]  Abbas F. Sadikot,et al.  Flow-based fiber tracking with diffusion tensor and q-ball data: Validation and comparison to principal diffusion direction techniques , 2005, NeuroImage.

[31]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[32]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[33]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[34]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[35]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[36]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[37]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[38]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[39]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[40]  Giuseppe Scotti,et al.  A Model-Based Deconvolution Approach to Solve Fiber Crossing in Diffusion-Weighted MR Imaging , 2007, IEEE Transactions on Biomedical Engineering.

[41]  Rachid Deriche,et al.  Labeling of ambiguous subvoxel fibre bundle configurations in high angular resolution diffusion MRI , 2008, NeuroImage.

[42]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[43]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[44]  Jan Sijbers,et al.  Estimation of uncertainty in constrained spherical deconvolution fiber orientations , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[45]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[46]  Philip A. Cook,et al.  Exploiting peak anisotropy for tracking through complex structures , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[47]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[48]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[49]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[50]  J Sijbers,et al.  Mathematical framework for simulating diffusion tensor MR neural fiber bundles , 2005, Magnetic resonance in medicine.

[51]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.