‘Broken symmetries’ in macromolecular crystallography: phasing from unmerged data

Site-specific radiation damage and anisotropy of anomalous scattering can induce intensity differences in symmetry-related reflections. If the data are kept unmerged, these symmetry-breaking effects can become a source of phase information.

[1]  G. Bricogne,et al.  SAD phasing with triiodide, softer X-rays and some help from radiation damage. , 2003, Acta crystallographica. Section D, Biological crystallography.

[2]  J Berendzen,et al.  The catalytic pathway of cytochrome p450cam at atomic resolution. , 2000, Science.

[3]  E. Merritt,et al.  Crystallographic structure analysis of lamprey hemoglobin from anomalous dispersion of synchrotron radiation , 1988, Proteins.

[4]  V. Dmitrienko Forbidden reflections due to anisotropic X-ray susceptibility of crystals , 1983 .

[5]  R. Ravelli,et al.  The 'fingerprint' that X-rays can leave on structures. , 2000, Structure.

[6]  Uwe Bergmann,et al.  X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Perutz,et al.  The structure of haemoglobin - IV. Sign determination by the isomorphous replacement method , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Michael G. Rossmann,et al.  The single isomorphous replacement method , 1961 .

[9]  E. Fanchon,et al.  Effect of the anisotropy of anomalous scattering on the MAD phasing method. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[10]  B. Matthews The extension of the isomorphous replacement method to include anomalous scattering measurements , 1966 .

[11]  Biaxial tensors for anomalous scattering of X-rays in selenolanthionine. , 1988, Acta crystallographica. Section A, Foundations of crystallography.

[12]  A. Kirfel,et al.  Anisotropy of anomalous dispersion in X-ray diffraction , 1991 .

[13]  W A Hendrickson,et al.  Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD): a vehicle for direct determination of three‐dimensional structure. , 1990, The EMBO journal.

[14]  J. Ferrer,et al.  X-ray-induced debromination of nucleic acids at the Br K absorption edge and implications for MAD phasing. , 2002, Acta crystallographica. Section D, Biological crystallography.

[15]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[16]  A. Kirfel,et al.  Polarization anisotropy of X-ray atomic factors and 'forbidden' resonant reflections. , 2005, Acta crystallographica. Section A, Foundations of crystallography.

[17]  J. Hajdu,et al.  The catalytic pathway of horseradish peroxidase at high resolution , 2002, Nature.

[18]  T. Earnest,et al.  Single-wavelength anomalous diffraction phasing revisited. , 2000, Acta crystallographica. Section D, Biological crystallography.

[19]  T. Izard,et al.  The crystal structure of a novel bacterial adenylyltransferase reveals half of sites reactivity , 1999, The EMBO journal.

[20]  G. Bricogne,et al.  Exploiting the anisotropy of anomalous scattering boosts the phasing power of SAD and MAD experiments , 2008, Acta crystallographica. Section D, Biological crystallography.

[21]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[22]  K. Hodgson,et al.  Low-temperature x-ray absorption spectroscopy of plastocyanin: evidence for copper-site photoreduction at cryogenic temperatures , 1989 .

[23]  G. Bricogne,et al.  X-ray absorption, refraction and resonant scattering tensors in selenated protein crystals: implications for data collection strategies in macromolecular crystallography , 2005 .

[24]  G. Bricogne,et al.  Polarization-dependence of anomalous scattering in brominated DNA and RNA molecules, and importance of crystal orientation in single- and multiple-wavelength anomalous diffraction phasing , 2007 .

[25]  Radiation-damage-induced phasing with anomalous scattering: substructure solution and phasing. , 2004, Acta crystallographica. Section D, Biological crystallography.

[26]  R. Ravelli,et al.  Phasing macromolecular structures with UV-induced structural changes. , 2006, Structure.

[27]  D. Barford,et al.  Crystal structure of the PP2A phosphatase activator: implications for its PP2A-specific PPIase activity. , 2006, Molecular cell.

[28]  R. Ravelli,et al.  Phasing in the presence of radiation damage , 2005 .

[29]  W. Burmeister,et al.  Structural changes in a cryo-cooled protein crystal owing to radiation damage. , 2000, Acta crystallographica. Section D, Biological crystallography.

[30]  J. Waser,et al.  Symmetry relations between structure factors , 1955 .

[31]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[32]  Sean McSweeney,et al.  Specific radiation damage can be used to solve macromolecular crystal structures. , 2003, Structure.

[33]  G Bricogne,et al.  Generation, representation and flow of phase information in structure determination: recent developments in and around SHARP 2.0. , 2003, Acta crystallographica. Section D, Biological crystallography.

[34]  J. M. BIJVOET,et al.  Structure of Optically Active Compounds in the Solid State , 1954, Nature.

[35]  D. Harker,et al.  The determination of the phases of the structure factors of non‐centrosymmetric crystals by the method of double isomorphous replacement , 1956 .

[36]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[37]  G. Bricogne,et al.  Instrument-independent specification of the diffraction geometry and polarization state of the incident X-ray beam , 2009 .

[38]  U. Shmueli,et al.  The mean-square Friedel intensity difference in P1 with a centrosymmetric substructure. , 2007, Acta crystallographica. Section A, Foundations of crystallography.

[39]  G Bricogne,et al.  Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. , 2004, Acta crystallographica. Section D, Biological crystallography.

[40]  A. North,et al.  The combination of isomorphous replacement and anomalous scattering data in phase determination of non-centrosymmetric reflexions , 1965 .

[41]  G. Bricogne,et al.  Modelling and refining site-specific radiation damage in SAD/MAD phasing. , 2007, Journal of synchrotron radiation.

[42]  C. Schulze-Briese,et al.  Dauter Using X-ray absorption spectra to monitor specific radiation damage to anomalously scattering atoms in macromolecular crystallography , 2007 .

[43]  Randy J Read,et al.  Application of the complex multivariate normal distribution to crystallographic methods with insights into multiple isomorphous replacement phasing. , 2003, Acta crystallographica. Section D, Biological crystallography.

[44]  Y. Okaya,et al.  New Method in X-Ray Crystal Structure Determination Involving the Use of Anomalous Dispersion , 1955 .

[45]  E. Fedorov,et al.  Radiation-induced site-specific damage of mercury derivatives: phasing and implications. , 2005, Acta crystallographica. Section D, Biological crystallography.

[46]  J L Sussman,et al.  Specific chemical and structural damage to proteins produced by synchrotron radiation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. Bricogne,et al.  [27] Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. , 1997, Methods in enzymology.

[48]  L. K. Templeton,et al.  X-RAY DICHROISM AND POLARIZED ANOMALOUS SCATTERING OF THE URANYL ION , 1982 .