Visualization Techniques

This chapter describes well-established procedures for multiple-labelling immuno fl uorescence as applied to peripheral neurons. Tissues are fi xed with a mixture of formaldehyde and picric acid, and then processed through solvents (ethanol and dimethyl sulfoxide or xylene) before preparation as sections (frozen or embedded in polyethylene glycol) or whole mounts. Specimens are exposed to small volumes of antibody mixtures and are then mounted in buffered glycerol prior to examination with fl uorescent microscope fi tted with appropriate optics for multi-labelling fl uorescence. Critical controls are summarised for all stages of the process, including the speci fi city of the primary antibodies, the secondary antibodies, and the subsequent image acquisition and analysis.

[1]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[2]  Alison L. Barth,et al.  Visualizing circuits and systems using transgenic reporters of neural activity , 2007, Current Opinion in Neurobiology.

[3]  G. Rutter,et al.  Inhibition of Mitochondrial Na (cid:1) -Ca 2 (cid:1) Exchange Restores Agonist-induced ATP Production and Ca 2 (cid:1) Handling in Human Complex I Deficiency* , 2004 .

[4]  Oliver Griesbeck,et al.  Improved calcium imaging in transgenic mice expressing a troponin C–based biosensor , 2007, Nature Methods.

[5]  Wei Zheng,et al.  Chemical calcium indicators. , 2008, Methods.

[6]  B. Van Houten,et al.  Mitochondrial dysfunction in neurodegenerative diseases and cancer , 2010, Environmental and molecular mutagenesis.

[7]  T. Cheng,et al.  Newly developed strategies for multifunctional mitochondria-targeted agents in cancer therapy. , 2011, Drug discovery today.

[8]  F. Helmchen,et al.  Calcium indicator loading of neurons using single-cell electroporation , 2007, Pflügers Archiv - European Journal of Physiology.

[9]  Moriah L. Szpara,et al.  Fluorescence-Based Monitoring of In Vivo Neural Activity Using a Circuit-Tracing Pseudorabies Virus , 2009, PloS one.

[10]  L. Enquist,et al.  Microdissection of neural networks by conditional reporter expression from a Brainbow herpesvirus , 2011, Proceedings of the National Academy of Sciences.

[11]  Eric Betzig,et al.  High-speed, low-photodamage nonlinear imaging using passive pulse splitters. , 2008, Nature methods.

[12]  Dimphy Zeegers,et al.  Ca2+-mobilizing agonists increase mitochondrial ATP production to accelerate cytosolic Ca2+ removal: aberrations in human complex I deficiency. , 2006, American journal of physiology. Cell physiology.

[13]  R. Tsien,et al.  based on green fluorescent proteins and calmodulin , 1997 .

[14]  O. Garaschuk,et al.  Targeted bulk-loading of fluorescent indicators for two-photon brain imaging in vivo , 2006, Nature Protocols.

[15]  J. Smeitink,et al.  Mitochondrial dynamics in human NADH:ubiquinone oxidoreductase deficiency. , 2009, The international journal of biochemistry & cell biology.

[16]  Cindy E J Dieteren,et al.  Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. , 2010, Antioxidants & redox signaling.

[17]  Ricardo Toledo-Crow,et al.  Video-rate nonlinear microscopy of neuronal membrane dynamics with genetically encoded probes. , 2004, Journal of neurophysiology.

[18]  S. Lukyanov,et al.  Genetically encoded fluorescent indicator for intracellular hydrogen peroxide , 2006, Nature Methods.

[19]  T. Sejnowski,et al.  A Compact Multiphoton 3D Imaging System for Recording Fast Neuronal Activity , 2007, PloS one.

[20]  M. Sobrinho-Simões,et al.  Mitochondria and cancer , 2009, Virchows Archiv.

[21]  Yaron Lipman,et al.  Herpesviruses carrying a Brainbow cassette reveal replication and expression of limited numbers of incoming genomes , 2010, Nature communications.

[22]  A. Grinvald,et al.  Compartment-Resolved Imaging of Activity-Dependent Dynamics of Cortical Blood Volume and Oximetry , 2005, The Journal of Neuroscience.

[23]  N. Davidson,et al.  Acousto-optic lens with very fast focus scanning. , 2001, Optics letters.

[24]  Takeharu Nagai,et al.  Functional Fluorescent Ca2+ Indicator Proteins in Transgenic Mice under TET Control , 2004, PLoS biology.

[25]  Balázs Rózsa,et al.  Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes , 2012, Nature Methods.

[26]  I. Alexander,et al.  Adeno-associated virus and lentivirus vectors mediate efficient and sustained transduction of cultured mouse and human dorsal root ganglia sensory neurons. , 2001, Human gene therapy.

[27]  Bernardo L. Sabatini,et al.  Supraresolution Imaging in Brain Slices using Stimulated-Emission Depletion Two-Photon Laser Scanning Microscopy , 2009, Neuron.

[28]  Werner J H Koopman,et al.  Computer-assisted live cell analysis of mitochondrial membrane potential, morphology and calcium handling. , 2008, Methods.

[29]  Richard Reynolds,et al.  Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis , 2011, Annals of neurology.

[30]  Keith J. Kelleher,et al.  Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity , 2008, Nature Neuroscience.

[31]  T. Murphy,et al.  Rapid Astrocyte Calcium Signals Correlate with Neuronal Activity and Onset of the Hemodynamic Response In Vivo , 2007, The Journal of Neuroscience.

[32]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[33]  J. Smeitink,et al.  The antioxidant Trolox restores mitochondrial membrane potential and Ca2+-stimulated ATP production in human complex I deficiency , 2009, Journal of Molecular Medicine.

[34]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[35]  C. Stosiek,et al.  In vivo two-photon calcium imaging of neuronal networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[36]  M L Walsh,et al.  Localization of mitochondria in living cells with rhodamine 123. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[37]  S. Dimauro,et al.  The genetics and pathology of oxidative phosphorylation , 2001, Nature Reviews Genetics.

[38]  Robert W. Taylor,et al.  A neurological perspective on mitochondrial disease , 2010, The Lancet Neurology.

[39]  T. Kost,et al.  Baculovirus expression vectors for insect and mammalian cells. , 2007, Current drug targets.

[40]  J. Smeitink,et al.  Life cell quantification of mitochondrial membrane potential at the single organelle level , 2008, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[41]  F. Helmchen,et al.  Imaging cellular network dynamics in three dimensions using fast 3D laser scanning , 2007, Nature Methods.

[42]  D. Kleinfeld,et al.  Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[43]  N. Demaurex,et al.  Dynamic Regulation of the Mitochondrial Proton Gradient during Cytosolic Calcium Elevations* , 2011, The Journal of Biological Chemistry.

[44]  J. Lemasters,et al.  Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. , 1986, Biochimica et biophysica acta.

[45]  Hajime Hirase,et al.  A multi-photon window onto neuronal–glial–vascular communication , 2005, Trends in Neurosciences.

[46]  B. Ngoi,et al.  Angular dispersion compensation for acousto-optic devices used for ultrashort-pulsed laser micromachining. , 2001, Optics express.

[47]  Nathan C Shaner,et al.  A guide to choosing fluorescent proteins , 2005, Nature Methods.

[48]  R. Silver,et al.  A compact Acousto-Optic Lens for 2D and 3D femtosecond based 2-photon microscopy. , 2010, Optics express.

[49]  F. Helmchen,et al.  Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo , 2004, Nature Methods.

[50]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[51]  R S Balaban,et al.  Optimizing multiphoton fluorescence microscopy light collection from living tissue by noncontact total emission detection (epiTED) , 2011, Journal of microscopy.

[52]  Lynn W Enquist,et al.  New developments in tracing neural circuits with herpesviruses. , 2005, Virus research.

[53]  J. Smeitink,et al.  Detection and manipulation of mitochondrial reactive oxygen species in mammalian cells. , 2010, Biochimica et biophysica acta.

[54]  Rutger O. Vogel,et al.  Subunits of Mitochondrial Complex I Exist as Part of Matrix- and Membrane-associated Subcomplexes in Living Cells* , 2008, Journal of Biological Chemistry.

[55]  S. Moncada Mitochondria as pharmacological targets , 2010, British journal of pharmacology.

[56]  F. Sablitzky,et al.  Efficient delivery of Cre-recombinase to neurons in vivo and stable transduction of neurons using adeno-associated and lentiviral vectors , 2004, BMC Neuroscience.

[57]  Martin Oheim,et al.  Two-photon imaging of capillary blood flow in olfactory bulb glomeruli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[58]  David S. Greenberg,et al.  Imaging input and output of neocortical networks in vivo. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  W. Denk,et al.  In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness , 2008, Proceedings of the National Academy of Sciences.

[60]  R. Rossignol,et al.  Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. , 2008, Antioxidants & redox signaling.

[61]  D. Wallace,et al.  Mitochondrial energetics and therapeutics. , 2010, Annual review of pathology.

[62]  Takeharu Nagai,et al.  Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators , 2009, Proceedings of the National Academy of Sciences.

[63]  Pál Maák,et al.  Random access three-dimensional two-photon microscopy. , 2007, Applied optics.

[64]  Volker Busskamp,et al.  Genetically timed, activity-sensor and rainbow transsynaptic viral tools , 2009, Nature Methods.

[65]  S. Barrow,et al.  Effects of Secretagogues and Bile Acids on Mitochondrial Membrane Potential of Pancreatic Acinar Cells , 2004, Journal of Biological Chemistry.

[66]  D. Nicholls Simultaneous Monitoring of Ionophore- and Inhibitor-mediated Plasma and Mitochondrial Membrane Potential Changes in Cultured Neurons* , 2006, Journal of Biological Chemistry.

[67]  Werner J H Koopman,et al.  Simultaneous quantitative measurement and automated analysis of mitochondrial morphology, mass, potential, and motility in living human skin fibroblasts , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[68]  Masatoshi Ishikawa,et al.  Variable-focus lens with 1-kHz bandwidth. , 2004, Optics express.

[69]  M L Walsh,et al.  Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy , 1981, The Journal of cell biology.

[70]  F. Jiménez-Jiménez,et al.  Oxidative stress in skin fibroblasts cultures from patients with Parkinson's disease , 2010, BMC neurology.

[71]  Ioannis A Kakadiaris,et al.  Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. , 2008, Journal of neurophysiology.

[72]  Carlos Portera-Cailliau,et al.  In vivo 2-photon calcium imaging in layer 2/3 of mice. , 2008, Journal of visualized experiments : JoVE.

[73]  M. Hermann,et al.  The cell-type specificity of mitochondrial dynamics. , 2009, The international journal of biochemistry & cell biology.

[74]  L. Tian,et al.  Reporting neural activity with genetically encoded calcium indicators , 2008, Brain cell biology.

[75]  R C Scaduto,et al.  Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. , 1999, Biophysical journal.

[76]  P. Saggau,et al.  Fast three-dimensional laser scanning scheme using acousto-optic deflectors. , 2005, Journal of biomedical optics.

[77]  Brendon O. Watson,et al.  Spike inference from calcium imaging using sequential Monte Carlo methods. , 2009, Biophysical journal.