Spectral WENO schemes with Adaptive Mesh Refinement for models of polydisperse sedimentation

The sedimentation of a polydisperse suspension with particles belonging to N size classes (species) can be described by a system of N nonlinear, strongly coupled scalar first-order conservation laws. Its solutions usually exhibit kinematic shocks separating areas of different composition. Based on the so-called secular equation [J. Anderson, Lin. Alg. Appl. 246, 49–70 (1996)], which provides access to the spectral decomposition of the Jacobian of the flux vector for this class of models, Burger et al. [J. Comput. Phys. 230, 2322–2344 (2011)] proposed a spectral weighted essentially non-oscillatory (WENO) scheme for the numerical solution of the model. It is demonstrated that the efficiency of this scheme can be improved by the technique of Adaptive Mesh Refinement (AMR), which concentrates computational effort on zones of strong variation. Numerical experiments for the cases N = 4 and N = 7 are presented.

[1]  A. Thornton,et al.  Breaking size segregation waves and particle recirculation in granular avalanches , 2008, Journal of Fluid Mechanics.

[2]  Alice J. Kozakevicius,et al.  Adaptive multiresolution WENO schemes for multi-species kinematic flow models , 2007, J. Comput. Phys..

[3]  Raimund Bürger,et al.  Hyperbolicity Analysis of Polydisperse Sedimentation Models via a Secular Equation for the Flux Jacobian , 2010, SIAM J. Appl. Math..

[4]  Tao Tang,et al.  Adaptive Mesh Methods for One- and Two-Dimensional Hyperbolic Conservation Laws , 2003, SIAM J. Numer. Anal..

[5]  J. Liandrat,et al.  The wavelet transform : some applications to fluid dynamics and turbulence , 1990 .

[6]  A. Harten Multiresolution algorithms for the numerical solution of hyperbolic conservation laws , 2010 .

[7]  Joel Anderson A SECULAR EQUATION FOR THE EIGENVALUES OF A DIAGONAL MATRIX PERTURBATION , 1996 .

[8]  E. Sumner,et al.  An experimental investigation of sand–mud suspension settling behaviour: implications for bimodal mud contents of submarine flow deposits , 2006 .

[9]  G. Anestis,et al.  Sediment composition due to settling of particles of different sizes , 1985 .

[10]  E. Sumner,et al.  The structure of the deposit produced by sedimentation of polydisperse suspensions , 2011 .

[11]  Robert H. Davis,et al.  The sedimentation of polydisperse suspensions in vessels having inclined walls , 1982 .

[12]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[13]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[14]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[15]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[16]  P. Lax,et al.  Systems of conservation laws , 1960 .

[17]  Raimund Bürger,et al.  On the implementation of WENO schemes for a class of polydisperse sedimentation models , 2011, J. Comput. Phys..

[18]  Carlos A. Vega,et al.  On the hyperbolicity of certain models of polydisperse sedimentation , 2012 .

[19]  Pep Mulet,et al.  A secular equation for the Jacobian matrix of certain multispecies kinematic flow models , 2010 .

[20]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[21]  J. J. Quirk,et al.  An adaptive grid algorithm for computational shock hydrodynamics , 1991 .

[22]  M. J. Lockett,et al.  Sedimentation of Binary Particle Mixtures , 1979 .

[23]  Raimund Bürger,et al.  Model Equations and Instability Regions for the Sedimentation of Polydisperse Suspensions of Spheres , 2002 .

[24]  Rosa Donat,et al.  Point Value Multiscale Algorithms for 2D Compressible Flows , 2001, SIAM J. Sci. Comput..

[25]  P. Snabre,et al.  Size segregation and particle velocity fluctuations in settling concentrated suspensions , 2009 .

[26]  Albert Cohen,et al.  Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..

[27]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[28]  Antonio Baeza,et al.  Adaptation based on interpolation errors for high order mesh refinement methods applied to conservation laws , 2012 .

[29]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[30]  Kai Schneider,et al.  A MULTIRESOLUTION METHOD FOR THE SIMULATION OF SEDIMENTATION IN INCLINED CHANNELS , 2012 .

[31]  Anthony Richard Thornton,et al.  Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches , 2008, European Journal of Applied Mathematics.