Dust and gas in luminous infrared galaxies – results from SCUBA observations

We present new data taken at 850 μm with SCUBA at the James Clerk Maxwell Telescope for a sample of 19 luminous infrared galaxies. Fourteen galaxies were detected. We have used these data, together with fluxes at 25, 60 and 100 μm from IRAS, to model the dust emission. We find that the emission from most galaxies can be described by an optically thin, single temperature dust model with an exponent of the dust extinction coefficient (k∝λ−β) of β≃1.4–2. A lower β≃1 is required to model the dust emission from two of the galaxies, Arp 220 and NGC 4418. We discuss various possibilities for this difference and conclude that the most likely is a high dust opacity. In addition, we compare the molecular gas mass derived from the dust emission, M850 μm, with the molecular gas mass derived from the CO emission, MCO, and find that MCO is on average a factor 2–3 higher than M850 μm.

[1]  Garantizar LA Correcta,et al.  Version 2.0 , 2001 .

[2]  Hilo,et al.  SCUBA: A Common - user submillimetre camera operating on the James Clerk Maxwell telescope , 1998, astro-ph/9809122.

[3]  Jonathan Ivor Davies,et al.  Deep Submillimeter Images of NGC 891—Cold Dust at Larger Galactic Radii , 1998 .

[4]  P. Solomon,et al.  Rotating Nuclear Rings and Extreme Starbursts in Ultraluminous Galaxies , 1998, astro-ph/9806377.

[5]  D. Kunze,et al.  What Powers Ultraluminous IRAS Galaxies? , 1997, astro-ph/9711255.

[6]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[7]  G. Mamon,et al.  Extragalactic astronomy in the infrared , 1997 .

[8]  1.25-mm observations of a complete sample of IRAS galaxies — II. Dust properties , 1996 .

[9]  D. Sanders,et al.  LUMINOUS INFRARED GALAXIES , 1996 .

[10]  M. Rowan-Robinson,et al.  Multiwavelength energy distributions of ultraluminous IRAS galaxies - I. Submillimetre and X-ray observations , 1996 .

[11]  C. Norman,et al.  Cold Gas at High Redshift , 1995, astro-ph/9512134.

[12]  C. Carilli,et al.  Cold gas at high redshift , 1996 .

[13]  Simon J. E. Radford,et al.  Molecular Gas and Dust in Infrared Luminous Galaxies , 1996 .

[14]  A. Kinney,et al.  The heating of dust in starburst galaxies: The contribution of the nonionizing radiation , 1995 .

[15]  John M. Carpenter,et al.  The FCRAO Extragalactic CO Survey. I. The Data , 1995 .

[16]  T. Heckman,et al.  Ionized Gas in the Halos of Edge-on, Starburst Galaxies: Data and Results , 1995 .

[17]  G. Rieke,et al.  A comparison of dynamical and molecular gas masses in very luminous infrared galaxies , 1994 .

[18]  P. Roche,et al.  The nature of the millimetre emission in NGC 4102, NGC 4418, NGC 6000 and MRK 231. , 1993 .

[19]  G. Neugebauer,et al.  1.25 MM OBSERVATIONS OF LUMINOUS INFRARED GALAXIES , 1992 .

[20]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[21]  Philip R. Maloney,et al.  I(CO)/N(H2) conversions and molecular gas abundances in spiral and irregular galaxies , 1988 .

[22]  M. Skrutskie,et al.  Direct infrared imaging of VB 8 , 1987 .

[23]  G. Knapp,et al.  Interstellar dust in Shapley-Ames elliptical galaxies , 1987 .

[24]  C. Perrier,et al.  On the binary nature of Van Biesbroeck 8 , 1987 .

[25]  W. Priedhorsky,et al.  Search for orbital X-ray variation in Scorpius X-1 , 1987 .

[26]  Fabio Reale,et al.  Hydrodynamic flare modeling - Comparison of numerical calculations with SMM observations of the 1980 November 12 17:00 UT flare , 1987 .

[27]  Judith S. Young,et al.  Detection of CO(1-0) emission and optical imaging of the Seyfert galaxy/QSO Markarian 231 , 1987 .

[28]  A. Tielens,et al.  Composition, Structure, and Chemistry of Interstellar Dust , 1987 .

[29]  S. D. James,et al.  NGC 4418; a very extinguished galaxy , 1986 .

[30]  E. I. Robson,et al.  IR observations of the peculiar galaxy Arp220 , 1984, Nature.