Cellular mechanisms of cerebellar LTD

[1]  O. Oscarsson,et al.  Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. , 1981, The Journal of physiology.

[2]  Masao Ito,et al.  Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells , 1982, The Journal of physiology.

[3]  T. Sears,et al.  Effect of glutamate, aspartate and related derivatives on cerebellar Purkinje cell dendrites in the rat: an in vitro study , 1982, The Journal of physiology.

[4]  P. Greengard,et al.  Protein kinases in the brain. , 1985, Annual review of biochemistry.

[5]  M. Kano,et al.  Long-term depression of parallel fibre synapses following stimulation of climbing fibres , 1985, Brain Research.

[6]  Y. Nishizuka Studies and perspectives of protein kinase C. , 1986, Science.

[7]  M. Kano,et al.  Quisqualate receptors are specifically involved in cerebellar synaptic plasticity , 1987, Nature.

[8]  M. Sakurai Synaptic modification of parallel fibre‐Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. , 1987, The Journal of physiology.

[9]  F. Crépel,et al.  Activation of protein kinase C induces a long-term depression of glutamate sensitivity of cerebellar Purkinje cells. An in vitro study , 1988, Brain Research.

[10]  M. Hagiwara,et al.  Cell type-specific expression of protein kinase C isozymes in the rabbit cerebellum. , 1988, The Journal of biological chemistry.

[11]  J. Garthwaite,et al.  Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain , 1988, Nature.

[12]  J. Garthwaite,et al.  A Kainate Receptor Linked to Nitric Oxide Synthesis from Arginine , 1989, Journal of neurochemistry.

[13]  H. Sugiyama,et al.  Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. , 1990, The Journal of physiology.

[14]  S. Snyder,et al.  Localization of nitric oxide synthase indicating a neural role for nitric oxide , 1990, Nature.

[15]  S. Snyder,et al.  Messenger molecules in the cerebellum , 1990, Trends in Neurosciences.

[16]  F. Crépel,et al.  Pairing of pre‐ and postsynaptic activities in cerebellar Purkinje cells induces long‐term changes in synaptic efficacy in vitro. , 1991, The Journal of physiology.

[17]  S. Watson Advances in second messengers and phosphoprotein research Series edited by P. Greenguard and G. A. Robinson. vol. 24: The biology and medicine of signal transduction. volume Editors: Y. Nishizuka,M. Endo and C. Tanaka. Raven Press (1990), 750 pp , 1991, Neuroscience.

[18]  M H Ellisman,et al.  Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons , 1991, The Journal of cell biology.

[19]  D. Linden,et al.  Participation of postsynaptic PKC in cerebellar long-term depression in culture. , 1991, Science.

[20]  K. Shibuki,et al.  Endogenous nitric oxide release required for long-term synaptic depression in the cerebellum , 1991, Nature.

[21]  K. Mikoshiba,et al.  Immunohistochemical localization of ryanodine receptors in mouse central nervous system , 1992, Neuroscience Research.

[22]  Masao Ito,et al.  Protein kinases and phosphatase inhibitors mediating long-term desensitization of glutamate receptors in cerebellar Purkinje cells , 1992, Neuroscience Research.

[23]  J. Garthwaite,et al.  Sources and targets of nitric oxide in rat cerebellum , 1992, Neuroscience Letters.

[24]  W Wisden,et al.  The rat delta‐1 and delta‐2 subunits extend the excitatory amino acid receptor family , 1993, FEBS letters.

[25]  P. Somogyi,et al.  The metabotropic glutamate receptor (mGluRlα) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction , 1993, Neuron.

[26]  S. Nakanishi,et al.  Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells , 1994, Neuron.

[27]  G. Collingridge,et al.  Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1 , 1994, Nature.

[28]  Michael Hollmann,et al.  N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluR1 , 1994, Neuron.

[29]  I. Bezprozvanny,et al.  The pharmacology of intracellular Ca2+-release channels , 1994 .

[30]  S. Tonegawa,et al.  Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice , 1994, Cell.

[31]  F. Crépel,et al.  Properties of glutamate receptors are modified during long-term depression in rat cerebellar Purkinje cells , 1994, Neuroscience Research.

[32]  J. Rossier,et al.  Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration , 1994, Neuropharmacology.

[33]  K. Mikoshiba,et al.  Ca2+ release from Ca2+ stores, particularly from ryanodine-sensitive Ca2+ stores, is required for the induction of LTD in cultured cerebellar Purkinje cells. , 1995, Journal of neurophysiology.

[34]  E. Audinat,et al.  Evidence for two types of non-NMDA receptors in rat cerebellar purkinje cells maintained in slice cultures , 1995, Neuropharmacology.

[35]  M. Mezna,et al.  Pharmacological modulators of the inositol 1,4,5-trisphosphate receptor , 1995, Neuropharmacology.

[36]  Youngnam Kang,et al.  Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluRδ2 mutant mice , 1995, Cell.

[37]  D. Linden Phospholipase A2 controls the induction of short-term versus long-term depression in the cerebellar Purkinje neuron in culture , 1995, Neuron.

[38]  Richard F. Thompson,et al.  Impaired motor coordination correlates with persistent multiple climbing fiber innervation in PKCγ mutant mice , 1995, Cell.

[39]  Masao Ito,et al.  Transient and persistent phosphorylation of AMPA-type glutamate receptor subunits in cerebellar Purkinje cells , 1995, Neuron.

[40]  Richard F. Thompson,et al.  Deficient Cerebellar Long-Term Depression, Impaired Eyeblink Conditioning, and Normal Motor Coordination in GFAP Mutant Mice , 1996, Neuron.

[41]  J. Garthwaite,et al.  Tyrosine Kinase Is Required for Long-Term Depression in the Cerebellum , 1996, Neuron.

[42]  D. Linden,et al.  A Protein Synthesis–Dependent Late Phase of Cerebellar Long-Term Depression , 1996, Neuron.

[43]  F. Crépel,et al.  Presynaptic and postsynaptic effects of nitric oxide donors at synapses between parallel fibres and Purkinje cells: involvement in cerebellar long-term depression , 1997, Neuroscience.

[44]  K. Mikoshiba,et al.  Activation of the G protein Gq/11 through tyrosine phosphorylation of the α subunit , 1997 .

[45]  K. Shibuki,et al.  Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices. , 1997, The Journal of physiology.

[46]  R. Tsien,et al.  Synergies and Coincidence Requirements between NO, cGMP, and Ca2+ in the Induction of Cerebellar Long-Term Depression , 1997, Neuron.

[47]  Chris I. De Zeeuw,et al.  Expression of a Protein Kinase C Inhibitor in Purkinje Cells Blocks Cerebellar LTD and Adaptation of the Vestibulo-Ocular Reflex , 1998, Neuron.