Unconditionally energy stable implicit time integration: application to multibody system analysis and design

[1]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[2]  Linda,et al.  A Time Integration Algorithm forFlexible Mechanism Dynamics : TheDAE-Method , 1996 .

[3]  T. Fung Unconditionally stable higher-order Newmark methods by sub-stepping procedure , 1997 .

[4]  P. Fisette,et al.  Numerical integration of multibody system dynamic equations using the coordinate partitioning method in an implicit Newmark scheme , 1996 .

[5]  J. C. Simo,et al.  On the stability of symplectic and energy-momentum algorithms for non-linear Hamiltonian systems with symmetry , 1996 .

[6]  W. Blajer An effective solver for absolute variable formulation of multibody dynamics , 1995 .

[7]  D. Tortorelli,et al.  Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity , 1994 .

[8]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[9]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[10]  Edward J. Haug,et al.  A Recursive Formulation for Real-Time Dynamic Simulation of Mechanical Systems , 1991 .

[11]  Linda R. Petzold,et al.  The numerical solution of higher index differential/algebraic equations by implicit methods , 1989 .

[12]  K. Park,et al.  Stabilization of computational procedures for constrained dynamical systems , 1988 .

[13]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[14]  S. S. Kim,et al.  A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformations , 1986 .

[15]  Edward J. Haug,et al.  Design Sensitivity Analysis of Structural Systems , 1986 .

[16]  N. K. Mani,et al.  Application of Singular Value Decomposition for Analysis of Mechanical System Dynamics , 1985 .

[17]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[18]  Thomas J. R. Hughes,et al.  FINITE-ELEMENT METHODS FOR NONLINEAR ELASTODYNAMICS WHICH CONSERVE ENERGY. , 1978 .

[19]  Thomas J. R. Hughes,et al.  Implicit-Explicit Finite Elements in Transient Analysis: Stability Theory , 1978 .

[20]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[21]  E. Haug,et al.  A State-Space-Based Implicit Integration Algorithm for Differential-Algebraic Equations of Multibody Dynamics* , 1997 .

[22]  Ekkehard Ramm,et al.  Conservation of Energy and Momentum for Implicit Single Step Time Integration Schemes. , 1996 .

[23]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[24]  U. Ascher,et al.  Stabilization of Constrained Mechanical Systems with DAEs and Invariant Manifolds , 1995 .

[25]  Parviz E. Nikravesh,et al.  Construction of the Equations of Motion for Multibody Dynamics Using Point and Joint Coordinates , 1994 .

[26]  Linda R. Petzold,et al.  Computational Challenges in Mechanical Systems Simulation , 1994 .

[27]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems , 1994 .

[28]  Javier García de Jalón,et al.  Kinematic and Dynamic Simulation of Multibody Systems: The Real Time Challenge , 1994 .

[29]  Erik Lund,et al.  A Method of “Exact” Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses* , 1993 .

[30]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[31]  Sunil Saigal,et al.  Dynamic analysis of multi-body systems using tangent coordinates , 1989 .

[32]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[33]  Edward J. Haug,et al.  Design Sensitivity Analysis and Optimization of Dynamically Driven Systems , 1984 .

[34]  E. Haug,et al.  Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems , 1982 .

[35]  N. I. Levitskii Analysis and synthesis of mechanisms , 1975 .