High Power Density ScAlN-Based Heterostructure FETs for mm-Wave Applications

We report on recent progress on the development of Scandium Aluminum Nitride (ScAlN) based heterostructure field effect transistors (HFETs). We are leveraging the enhanced polarization properties of ScAlN lattice-matched to Gallium Nitride (GaN) to produce heterostructures that support very large carrier densities (>3.0×1013 /cm2). We have successfully grown device-quality ScAlN/GaN heterostructures by molecular beam epitaxy (MBE). Using these wafers we have fabricated low resistance contacts for ScAlN barrier HFETs and demonstrated transistors which simultaneously achieve high current density (>3 A/mm), large breakdown voltage (>60 V), and good mm-wave small signal gain (>13 dB at 30 GHz). The high current density coupled with the large breakdown field strength of GaN enables both current and voltage scaling of ScAlN/GaN HFETs and enables design of transistors that overcome the Bode-Fano bandwidth limitations.

[1]  Yu Cao,et al.  MBE-Regrown Ohmics in InAlN HEMTs With a Regrowth Interface Resistance of 0 . 05 Ω · mm , 2012 .

[2]  Siyuan Zhang,et al.  Piezoelectric coefficients and spontaneous polarization of ScAlN , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  A. Crespo,et al.  Short-Channel Effect Limitations on High-Frequency Operation of AlGaN/GaN HEMTs for T-Gate Devices , 2007, IEEE Transactions on Electron Devices.

[4]  R. Fitch,et al.  High-Performance AlN/GaN HEMTs on Sapphire Substrate With an Oxidized Gate Insulator , 2011, IEEE Electron Device Letters.

[5]  S. Keller,et al.  High-power AlGaN/GaN HEMTs for Ka-band applications , 2005, IEEE Electron Device Letters.

[6]  F. Medjdoub,et al.  High frequency high breakdown voltage GaN transistors , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[7]  V. Miller,et al.  High-Power Ka-Band Performance of AlInN/GaN HEMT With 9.8-nm-Thin Barrier , 2010, IEEE Electron Device Letters.

[8]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[9]  Yu Cao,et al.  MBE-Regrown Ohmics in InAlN HEMTs With a Regrowth Interface Resistance of 0.05 $\Omega\cdot\hbox{mm}$ , 2012, IEEE Electron Device Letters.

[10]  Xiang Gao,et al.  ${\rm SiN}_{x}$ /InAlN/AlN/GaN MIS-HEMTs With 10.8 ${\rm THz}\cdot{\rm V}$ Johnson Figure of Merit , 2014, IEEE Electron Device Letters.

[11]  Umesh K. Mishra,et al.  Demonstration of Constant 8 W/mm Power Density at 10, 30, and 94 GHz in State-of-the-Art Millimeter-Wave N-Polar GaN MISHEMTs , 2018, IEEE Transactions on Electron Devices.

[12]  Kevin J. Chen,et al.  Schottky Source/Drain InAlN/AlN/GaN MISHEMT With Enhanced Breakdown Voltage , 2012, IEEE Electron Device Letters.

[13]  D. Katzer,et al.  Epitaxial ScAlN grown by molecular beam epitaxy on GaN and SiC substrates , 2017 .

[14]  Debdeep Jena,et al.  High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions , 2007 .

[15]  Keisuke Shinohara,et al.  Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications , 2013, IEEE Transactions on Electron Devices.

[16]  R. Fano Theoretical limitations on the broadband matching of arbitrary impedances , 1950 .

[17]  J. Carlin,et al.  AlInN-Based HEMTs for Large-Signal Operation at 40 GHz , 2013, IEEE Transactions on Electron Devices.