On the six components of optical angular momentum

In special relativity the angular momentum is a rank-two antisymmetric tensor with six independent components. Three of these are the familiar generators of spatial rotation, which for light have been studied at length. The remaining three, which are responsible for the Lorentz boosts, have largely been neglected. We introduce the latter and compare their properties with those of the more familiar generators of rotations. The seemingly natural separation of the generators of Lorentz boosts into spin and orbital parts fails, however, as the spin part is identically zero.

[1]  John David Jackson,et al.  Classical Electrodynamics , 2020, Nature.

[2]  Robert W. Boyd,et al.  Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables , 2010, Science.

[3]  K. Bliokh,et al.  Angular Momenta and Spin-Orbit Interaction of Nonparaxial Light in Free Space , 2010, 1006.3876.

[4]  Stephen M. Barnett,et al.  Rotation of Electromagnetic Fields and the Nature of Optical Angular Momentum , 2010, Journal of modern optics.

[5]  S. Franke-Arnold,et al.  Angular EPR paradox , 2004, quant-ph/0506240.

[6]  Stephen M. Barnett,et al.  Optical Angular Momentum , 2003 .

[7]  L. Allen,et al.  Introduction to the atoms and angular momentum of light special issue , 2002 .

[8]  Stephen M. Barnett,et al.  Two-photon entanglement of orbital angular momentum states , 2002 .

[9]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[10]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[11]  C. cohen-tannoudji,et al.  Photons and Atoms , 1997 .

[12]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[13]  Stephen M. Barnett,et al.  Orbital angular momentum and nonparaxial light beams , 1994 .

[14]  G. Nienhuis,et al.  Commutation rules and eigenvalues of spin and orbital angular momentum of radiation fields , 1994 .

[15]  Gerard Nienhuis,et al.  Spin and Orbital Angular Momentum of Photons , 1994 .

[16]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[17]  P. M. Radmore,et al.  Advanced mathematical methods for engineering and science students: Frontmatter , 1990 .

[18]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[19]  L. Silberstein,et al.  The Theory of Relativity , 1925, The Mathematical Gazette.

[20]  Miles J. Padgett,et al.  IV The Orbital Angular Momentum of Light , 1999 .

[21]  M J Padgett,et al.  Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. , 1997, Optics letters.

[22]  I. Bialynicki-Birula V Photon Wave Function , 1996 .

[23]  H. Jones,et al.  Groups, representations, and physics , 1990 .

[24]  R. Feynman,et al.  The Feynman Lectures on Physics Addison-Wesley Reading , 1963 .

[25]  William H. Pickering The Theory of Relativity , 1920, Nature.

[26]  J. Larmor A dynamical theory of the electric and luminiferous medium. Part III. Relations with material media , 1897, Proceedings of the Royal Society of London.

[27]  Oliver Heaviside,et al.  V. On the forces, stresses, and fluxes of energy in the electromagnetic field , 1892, Proceedings of the Royal Society of London.