Regularity Lemmas for Graphs

Szemeredi’s regularity lemma proved to be a fundamental result in modern graph theory. It had a number of important applications and is a widely used tool in extremal combinatorics. For some further applications variants of the regularity lemma were considered. Here we discuss several of those variants and their relation to each other.

[1]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[2]  K. F. Roth On Certain Sets of Integers , 1953 .

[3]  Paul Erdös,et al.  On some extremal problems on r-graphs , 1971, Discret. Math..

[4]  P. Erdijs ON SOME EXTREMAL PROBLEMS ON r-GRAPHS , 1971 .

[5]  W. G. Brown,et al.  On the existence of triangulated spheres in 3-graphs, and related problems , 1973 .

[6]  F. Harary New directions in the theory of graphs , 1973 .

[7]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[8]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[9]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[10]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[11]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for IP-systems and combinatorial theory , 1985 .

[12]  Vojtech Rödl,et al.  The asymptotic number of graphs not containing a fixed subgraph and a problem for hypergraphs having no exponent , 1986, Graphs Comb..

[13]  Peter J. Cameron,et al.  Some sequences of integers , 1989, Discret. Math..

[14]  Vojtech Rödl,et al.  A Fast Approximation Algorithm for Computing the Frequencies of Subgraphs in a Given Graph , 1995, SIAM J. Comput..

[15]  Yoshiharu Kohayakawa,et al.  Turán's Extremal Problem in Random Graphs: Forbidding Even Cycles , 1995, J. Comb. Theory, Ser. B.

[16]  Yoshiharu Kohayakawa,et al.  The Induced Size-Ramsey Number of Cycles , 1995, Combinatorics, Probability and Computing.

[17]  M. Simonovits,et al.  Szemeredi''s Regularity Lemma and its applications in graph theory , 1995 .

[18]  Y. Kohayakawa,et al.  Turán's extremal problem in random graphs: Forbidding odd cycles , 1996, Comb..

[19]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[20]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[21]  W. T. Gowers,et al.  Lower bounds of tower type for Szemerédi's uniformity lemma , 1997 .

[22]  Dana Ron,et al.  Property testing and its connection to learning and approximation , 1998, JACM.

[23]  Noga Alon,et al.  Efficient Testing of Large Graphs , 2000, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[24]  Alan M. Frieze,et al.  Quick Approximation to Matrices and Applications , 1999, Comb..

[25]  N. Alon,et al.  testing of large graphs , 2000 .

[26]  János Komlós,et al.  The Regularity Lemma and Its Applications in Graph Theory , 2000, Theoretical Aspects of Computer Science.

[27]  Vojtech Rödl,et al.  Extremal problems on set systems , 2002, Random Struct. Algorithms.

[28]  Yoshiharu Kohayakawa,et al.  Szemerédi’s Regularity Lemma and Quasi-randomness , 2003 .

[29]  Vojtech Rödl,et al.  Regularity properties for triple systems , 2003, Random Struct. Algorithms.

[30]  József Solymosi,et al.  A Note on a Question of Erdős and Graham , 2004, Combinatorics, Probability and Computing.

[31]  Vojtech Rödl,et al.  Regularity Lemma for k‐uniform hypergraphs , 2004, Random Struct. Algorithms.

[32]  László Lovász,et al.  Graph limits and testing hereditary graph properties , 2005 .

[33]  Jozef Skokan,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005 .

[34]  Vojtech Rödl,et al.  Counting subgraphs in quasi-random 4-uniform hypergraphs , 2005, Random Struct. Algorithms.

[35]  Stefanie Gerke,et al.  The sparse regularity lemma and its applications , 2005, BCC.

[36]  Noga Alon,et al.  A characterization of the (natural) graph properties testable with one-sided error , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[37]  Terence Tao Szemerédi's regularity lemma revisited , 2006, Contributions Discret. Math..

[38]  László Lovász,et al.  Limits of dense graph sequences , 2004, J. Comb. Theory B.

[39]  Vojtech Rödl,et al.  The counting lemma for regular k‐uniform hypergraphs , 2006, Random Struct. Algorithms.

[40]  T. Luczak Randomness and regularity , 2006 .

[41]  Mathias Schacht,et al.  Density theorems and extremal hypergraph problems , 2006 .

[42]  Vojtech Rödl,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006, Random Struct. Algorithms.

[43]  Jozef Skokan,et al.  Applications of the regularity lemma for uniform hypergraphs , 2006 .

[44]  B. Szegedy,et al.  Szemerédi’s Lemma for the Analyst , 2007 .

[45]  Vojtech Rödl,et al.  Regular Partitions of Hypergraphs: Regularity Lemmas , 2007, Combinatorics, Probability and Computing.

[46]  W. T. Gowers,et al.  Hypergraph regularity and the multidimensional Szemerédi theorem , 2007, 0710.3032.

[47]  Noga Alon,et al.  Every monotone graph property is testable , 2005, STOC '05.

[48]  B. Szegedy,et al.  Testing properties of graphs and functions , 2008, 0803.1248.

[49]  Vojtech Rödl,et al.  Generalizations of the removal lemma , 2009, Comb..

[50]  Terence Tao,et al.  Testability and repair of hereditary hypergraph properties , 2008, Random Struct. Algorithms.

[51]  Vojtech Rödl,et al.  Quasi-Randomness and Algorithmic Regularity for Graphs with General Degree Distributions , 2007, SIAM J. Comput..

[52]  Vojtech Rodi Some Developments in Ramsey Theory , 2010 .