Exponential-time approximation of weighted set cover
暂无分享,去创建一个
[1] Boris Konev,et al. MAX SAT approximation beyond the limits of polynomial-time approximation , 2001, Ann. Pure Appl. Log..
[2] Marcin Pilipczuk,et al. Exponential-Time Approximation of Hard Problems , 2008, ArXiv.
[3] Saharon Shelah,et al. Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..
[4] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[5] Vangelis Th. Paschos,et al. Efficient approximation by “low-complexity” exponential algorithms , 2008 .
[6] Ryan Williams,et al. Confronting hardness using a hybrid approach , 2006, SODA '06.
[7] Johan Håstad,et al. Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.
[8] Ge Xia,et al. Improved Parameterized Upper Bounds for Vertex Cover , 2006, MFCS.
[9] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[10] Andreas Björklund,et al. Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..
[11] J. Håstad. Clique is hard to approximate withinn1−ε , 1999 .
[12] Fabrizio Grandoni,et al. Measure and conquer: a simple O(20.288n) independent set algorithm , 2006, SODA '06.
[13] Andreas Björklund,et al. Inclusion--Exclusion Algorithms for Counting Set Partitions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[14] Vangelis Th. Paschos,et al. Efficient approximation of min set cover by moderately exponential algorithms , 2009, Theor. Comput. Sci..
[15] Andreas Björklund,et al. Exact Algorithms for Exact Satisfiability and Number of Perfect Matchings , 2007, Algorithmica.
[16] Dániel Marx,et al. Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..
[17] Bruno Escoffier,et al. Laboratoire D'analyse Et Modélisation De Systèmes Pour L'aide À La Décision Cahier Du Lamsade 278 Efficient Approximation of Min Set Cover by " Low-complexity " Exponential Algorithms Efficient Approximation of Min Set Cover by " Low-complexity " Exponential Algorithms , 2022 .
[18] Uriel Feige,et al. Zero knowledge and the chromatic number , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).
[19] Oscar H. Ibarra,et al. Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.