다중 얼굴 태깅 자동화

최근 웹페이지의 생성 및 웹이 가진 정보량이 기하급수적으로 늘면서 사용자의 검색 목적을 파악하여 효율을 높이기 위한 다양한 방법이 연구되고 있으며, 태깅 시스템이 하나의 대안으로 떠오르고 있다. 태깅 시스템은 인터넷 사용자로 하여금 태그라고 불리는 메타데이터를 글, 사진, 동영상 등에 부여하도록 함으로써 콘텐츠의 검색 및 브라우징을 편리하게 하는 시스템이다. 이처럼 태그는 해당 페이지의 대표 키워드를 의미하므로 콘텐츠 분류의 기준을 마련할 수 있으나, 사용자에 의해 직접 입력되어야 하는 수고가 필요하고, 또한 무분별한 태깅으로 인해 오히려 분류에 방해가 되는 등의 문제점들이 있다. 본 논문에서는 이러한 태깅의 문제를 해결하기 위한 방법으로 얼굴인식 알고리즘을 활용한 영상콘텐츠 내에서의 다중 얼굴 태깅 자동화 방법을 제시한다. 이를 위해 먼저 여러 얼굴검출 방법 중 Haar-like features와 AdaBoost 알고리즘을 이용하여 빠른 속도와 높은 정확도로 영상콘텐츠 내에서 얼굴 영역을 검출한다. 이후 PCA와 고유얼굴을 이용하여, 검출해 낸 얼굴을 데이터베이스에 미리 저장해 놓은 프로필 사진과 비교, 인식해냄으로써 해당 인물에 대한 정보를 불러와서 자동으로 태깅하는 시스템을 구현하였다. 이러한 새로운 방식의 태깅 기술은 현존하는 사진공유, 쇼핑, 검색 등의 수많은 웹서비스에 적용이 가능하며, 특히 소셜네트워크서비스에서의 사진 관리나 인물검색 등에서 활용할 때 큰 효과를 보일 것으로 기대된다.