A comprehensive review of the techniques on regenerative shock absorber systems

In this paper, the current technologies of the regenerative shock absorber systems have been categorized and evaluated. Three drive modes of the regenerative shock absorber systems, namely the direct drive mode, the indirect drive mode and hybrid drive mode are reviewed for their readiness to be implemented. The damping performances of the three different modes are listed and compared. Electrical circuit and control algorithms have also been evaluated to maximize the power output and to deliver the premium ride comfort and handling performance. Different types of parameterized road excitations have been applied to vehicle suspension systems to investigate the performance of the regenerative shock absorbers. The potential of incorporating nonlinearity into the regenerative shock absorber design analysis is discussed. The research gaps for the comparison of the different drive modes and the nonlinearity analysis of the regenerative shock absorbers are identified and, the corresponding research questions have been proposed for future work.

[1]  Fan Yu,et al.  Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system , 2007, 2007 IEEE International Conference on Vehicular Electronics and Safety.

[2]  Ruochen Wang,et al.  Study on coordinated control of the energy regeneration and the vibration isolation in a hybrid electromagnetic suspension , 2017 .

[3]  Billie F. Spencer,et al.  Self-powered and sensing control system based on MR damper: presentation and application , 2009, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[4]  Dhananjay rao Kuna Modeling, Simulation and Control of Semi Active Suspension System for Automobiles under MATLAB Simulink Using PID Controller , 2014 .

[5]  Simon Watkins,et al.  Coupling analysis of linear vibration energy harvesting systems , 2016 .

[6]  Norman M. Wereley,et al.  Self-Powered Magnetorheological Dampers , 2006 .

[7]  S. R. Shankapal,et al.  REGENERATIVE SHOCK ABSORBER FOR HYBRID CARS , 2013 .

[8]  Yohji Okada,et al.  Variable Resistance Type Energy Regenerative Damper Using Pulse Width Modulated Step-up Chopper , 2002 .

[9]  X. D. Xie,et al.  Energy harvesting from a vehicle suspension system , 2015 .

[10]  Shuo Cheng,et al.  A study of a multi-pole magnetic generator for low-frequency vibrational energy harvesting , 2010 .

[11]  Mustafa Demetgul,et al.  Design of the Hybrid Regenerative Shock Absorber and Energy Harvesting from Linear Movement , 2017 .

[12]  W. Liao,et al.  A self-sensing magnetorheological damper with power generation , 2012 .

[13]  Yoshihiro Suda,et al.  Electro-mechanical suspension system considering energy consumption and vehicle manoeuvre , 2008 .

[14]  Xu Wang,et al.  A study of electromagnetic vibration energy harvesters with different interface circuits , 2015 .

[15]  Jian Kuang,et al.  Mechanical Motion Rectifier Based Energy-Harvesting Shock Absorber , 2012 .

[16]  Xuexun Guo,et al.  Hydraulic Transmission Electromagnetic Energy-Regenerative Active Suspension and Its Working Principle , 2010, 2010 2nd International Workshop on Intelligent Systems and Applications.

[17]  Paul D. Mitcheson,et al.  Transduction Mechanisms and Power Density for MEMS Inertial Energy Scavengers , 2006 .

[18]  Dibin Zhu,et al.  Electromagnetic vibration energy harvesting using an improved Halbach array , 2012 .

[19]  Peng Li,et al.  Assessment of Vehicle Performances with Energy-Harvesting Shock Absorbers , 2013 .

[20]  Yoshihiro Suda,et al.  Study on coupled shock absorber system using four electromagnetic dampers , 2016 .

[21]  Peng Li,et al.  Influences of the electromagnetic regenerative dampers on the vehicle suspension performance , 2017 .

[22]  A. Arockia Selvakumar,et al.  Fuzzy Logic Control for Half Car Suspension System using MATLAB , 2014 .

[23]  Long Chen,et al.  Application of hybrid electromagnetic suspension in vibration energy regeneration and active control , 2018 .

[24]  Yiannos Manoli,et al.  Interface circuit using SMFE technique for an inductive kinetic generator operating as a frequency-up converter , 2013 .

[25]  Shankar Singh,et al.  Design and analysis of energy-harvesting shock absorber with electromagnetic and fluid damping , 2015 .

[26]  R. B. Goldner,et al.  A Preliminary Study of Energy Recovery in Vehicles by Using Regenerative Magnetic Shock Absorbers , 2001 .

[27]  Mir Behrad Khamesee,et al.  A hybrid electromagnetic shock absorber for active vehicle suspension systems , 2011 .

[28]  Yilun Liu,et al.  Design, Modeling, Lab, and Field Tests of a Mechanical-Motion-Rectifier-Based Energy Harvester Using a Ball-Screw Mechanism , 2017, IEEE/ASME Transactions on Mechatronics.

[29]  Zhenwei Liu,et al.  A novel regenerative shock absorber with a speed doubling mechanism and its Monte Carlo simulation , 2018 .

[30]  L. Zuo,et al.  Energy-harvesting shock absorber with a mechanical motion rectifier , 2013 .

[31]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[32]  Mehrdad Moallem,et al.  A Bidirectional Boost Converter With Application to a Regenerative Suspension System , 2016, IEEE Transactions on Vehicular Technology.

[33]  Lei Zuo,et al.  Mixed Skyhook and Power-Driven-Damper: A New Low-Jerk Semi-Active Suspension Control Based on Power Flow Analysis , 2016 .

[34]  Adrien Badel,et al.  Synchronized switch harvesting technique applied to electromagnetic vibrations harvester. , 2010 .

[35]  Amir Khajepour,et al.  Multi-objective optimization of a hybrid electromagnetic suspension system for ride comfort, road holding and regenerated power , 2017 .

[36]  Jeffrey T. Scruggs,et al.  Control of a Civil Structure Using an Electric Machine with Semiactive Capability , 2003 .

[37]  Jeonghoon Yoo,et al.  Design of a Halbach Magnet Array Based on Optimization Techniques , 2008, IEEE Transactions on Magnetics.

[38]  Longhan Xie,et al.  Design of a Hybrid Energy-Harvesting Shock Absorber , 2015 .

[39]  Leila Parsa,et al.  An Efficient AC–DC Step-Up Converter for Low-Voltage Energy Harvesting , 2010, IEEE Transactions on Power Electronics.

[40]  A. Massarini,et al.  Feedforward control of DC-DC PWM boost converter , 1997 .

[41]  Mukul Mitra,et al.  Energy Generating Suspension System for Commercial Vehicles , 2008 .

[42]  D. Divan,et al.  Bi-directional DC/DC converters for plug-in hybrid electric vehicle (PHEV) applications , 2008, 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition.

[43]  Stephen J. Elliott,et al.  Scaling of electromagnetic transducers for shunt damping and energy harvesting , 2014 .

[44]  Sungjoon Choi,et al.  Design of a Piezoelectric Energy-Harvesting Shock Absorber System for a Vehicle , 2013 .

[45]  Xinghuo Yu,et al.  Similarity and duality of electromagnetic and piezoelectric vibration energy harvesters , 2015 .

[46]  Yoshihiro Suda,et al.  Self-powered active vibration control using a single electric actuator , 2003 .

[47]  James Lam,et al.  Multi-objective control of vehicle active suspension systems via load-dependent controllers , 2006 .

[48]  Heath Hofmann,et al.  Adaptive piezoelectric energy harvesting circuit for wireless, remote power supply , 2001 .

[49]  Yoshihiro Suda,et al.  Study on Independent Tuning Damping Characteristic by Coupling of Electromagnetic Dampers for Automobiles , 2015 .

[50]  Lei Zuo,et al.  Large-scale vibration energy harvesting , 2013 .

[51]  Sayel M. Fayyad Constructing Control System for Active Suspension System , 2012 .

[52]  Levent Guvenc,et al.  Optimisation of the Nonlinear Suspension Characteristics of a Light Commercial Vehicle , 2013 .

[53]  Kimihiko Nakano,et al.  Combined Type Self-Powered Active Vibration Control of Truck Cabins , 2004 .

[54]  G E Bertocci,et al.  A gait-powered autologous battery charging system for artificial organs. , 1995, ASAIO journal.

[55]  Senthilkumar Mouleeswaran,et al.  Design and Development of PID Controller-Based Active Suspension System for Automobiles , 2012 .

[56]  J. A. Jendrzejczyk,et al.  Design of electromagnetic shock absorbers , 2006 .

[57]  Lei Zuo,et al.  Simulation and experiment validation of simultaneous vibration control and energy harvesting from buildings using Tuned Mass Dampers , 2011, Proceedings of the 2011 American Control Conference.

[58]  Andreas Vogl,et al.  Fabrication and characterization of a wideband MEMS energy harvester utilizing nonlinear springs , 2010 .

[59]  Wei-Hsin Liao,et al.  A mechanical energy harvested magnetorheological damper with linear-rotary motion converter , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[60]  Nicola Amati,et al.  Regenerative Shock Absorbers and the Role of the Motion Rectifier , 2016 .

[61]  Lei Zuo,et al.  Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester , 2014, IEEE/ASME Transactions on Mechatronics.

[62]  Xu Wang Coupling loss factor of linear vibration energy harvesting systems in a framework of statistical energy analysis , 2016 .

[63]  Ross Henderson,et al.  Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter , 2006 .

[64]  Octavian Curea,et al.  From functional analysis to energy harvesting system design: application to car suspension , 2014 .

[65]  Guang Hua,et al.  Energy-Regenerative Shock Absorber for Transportation Vehicles Based on Dual Overrunning Clutches: Design, Modeling, and Simulation , 2016 .

[66]  Shuo Cheng,et al.  Modeling of magnetic vibrational energy harvesters using equivalent circuit representations , 2007 .

[67]  Mehrdad Moallem,et al.  Energy Regenerative Suspension Using an Algebraic Screw Linkage Mechanism , 2014, IEEE/ASME Transactions on Mechatronics.

[68]  Zhiqiang Long,et al.  Study of EDS & EMS Hybrid Suspension System With Permanent-Magnet Halbach Array , 2011, IEEE transactions on magnetics.

[69]  Gang Li,et al.  Simulation Analysis on Controllability of Hydraulic Electrical Energy Regenerative Semi-Active Suspension , 2016 .

[70]  Dibin Zhu,et al.  Vibration energy harvesting using the Halbach array , 2012 .

[71]  Andrew Plummer,et al.  Determination of optimal parameters for a hydraulic power take-off unit of a wave energy converter in regular waves , 2012 .

[72]  Konghui Guo,et al.  Study on a novel hydraulic pumping regenerative suspension for vehicles , 2015, J. Frankl. Inst..

[73]  Thomas R. Kurfess,et al.  Testing and Modeling of Nonlinear Properties of Shock Absorbers for Vehicle Dynamics Studies , 2010 .

[74]  Stephen G. Burrow,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2009 .

[75]  Seok-Myeong Jang,et al.  Comparison of three types of PM brushless machines for an electro-mechanical battery , 2000 .

[76]  郑雪舂,et al.  A Novel Energy-regenerative Active Suspension for Vehicles , 2008 .

[77]  Z. Lei,et al.  A Review on Energy-Regenerative Suspension Systems for Vehicles , 2013 .

[78]  D. Inman,et al.  A piezomagnetoelastic structure for broadband vibration energy harvesting , 2009 .

[79]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[80]  Amr M. Baz,et al.  Energy Harvester with a Dynamic Magnifier , 2011 .

[81]  Lehigh Preserve,et al.  Research and Simulation on New Active Suspension Control System , 2013 .

[82]  Seung-Bok Choi,et al.  Vibration control of an electrorheological fluid-based suspension system with an energy regenerative mechanism , 2009 .

[83]  Lei Zuo,et al.  Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles , 2016 .

[84]  Wei Yang,et al.  A Hybrid Nonlinear Vibration Energy Harvester , 2017 .

[85]  Xiaogang Wei,et al.  Structure and Performance Analysis of Regenerative Electromagnetic Shock Absorber , 2010, J. Networks.

[86]  Zhang Yuxin,et al.  Energy conversion mechanism and regenerative potential of vehicle suspensions , 2017 .

[87]  Fengshou Gu,et al.  Modelling, testing and analysis of a regenerative hydraulic shock absorber system , 2016 .

[88]  Arti Tiwari,et al.  Controlling the Vibration of Bus Suspension System using PID Controller , 2015 .

[89]  Maciej Rosół,et al.  Evaluation of an energy harvesting mr damper-based Vibration reduction systemstem , 2016 .

[90]  Zhenghao Wang,et al.  Modelling and Experimental Study on Active Energy-Regenerative Suspension Structure with Variable Universe Fuzzy PD Control , 2016 .

[91]  Chaitanya Kuber,et al.  MODELLING SIMULATION AND CONTROL OF AN ACTIVE SUSPENSION SYSTEM , 2014 .

[92]  S. Priya Advances in energy harvesting using low profile piezoelectric transducers , 2007 .

[93]  Donato Ciampa,et al.  Correction to: The vibrations induced by surface irregularities in road pavements – a Matlab® approach , 2019, European Transport Research Review.

[94]  Adrien Badel,et al.  Energy harvesting from ambient vibrations: Electromagnetic device and synchronous extraction circuit , 2013 .

[95]  Yan Shuai,et al.  Energy regeneration scheme and self-powered criterion of motor-driven active suspension , 2016, 2016 35th Chinese Control Conference (CCC).

[96]  香川 利春 シリンダの省エネルギー--圧縮空気エネルギーの定義 (特集 空気圧システムの省エネルギー(3)) , 1999 .

[97]  Yu Zhou,et al.  Design and characterization of an electromagnetic energy harvester for vehicle suspensions , 2010 .

[98]  Branko Vasic,et al.  Design and Simulation of Active Suspension System by Using Matlab , 2000 .

[99]  Nitin Vijay Satpute,et al.  Hybrid electromagnetic shock absorber for energy harvesting in a vehicle suspension , 2017 .

[100]  Nong Zhang,et al.  Comparison of electromagnetic and piezoelectric vibration energy harvesters with different interface circuits , 2016 .

[101]  Long Chen,et al.  Control design and fuel economy investigation of power split HEV with energy regeneration of suspension , 2016 .

[102]  Swati Gaur Vibration Control of Bus Suspension System using PI and PID Controller , 2013 .

[103]  Liang Yan,et al.  Magnetic field of tubular linear machines with dual Halbach array , 2013 .

[104]  E. Koukharenko,et al.  Fabrication and Test of Integrated Micro-Scale Vibration Based Electromagnetic Generator , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[105]  Xu Wang,et al.  A dimensionless analysis of a 2DOF piezoelectric vibration energy harvester , 2015 .

[106]  M. Farid Golnaraghi,et al.  Design and modeling of a magnetic shock absorber based on eddy current damping effect , 2008 .

[107]  Yoshihiro Suda,et al.  Modeling of Electromagnetic Damper for Automobile Suspension , 2007 .

[108]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[109]  Jeffrey T Cheung Frictionless Linear Electrical Generator for Harvesting Motion Energy , 2004 .

[110]  Dibin Zhu,et al.  Increasing output power of electromagnetic vibration energy harvesters using improved Halbach arrays , 2013 .

[111]  Seok-Myeong Jang,et al.  Analysis and experimental verification of moving-magnet linear actuator with cylindrical Halbach array , 2004, IEEE Transactions on Magnetics.

[112]  Jae Yeong Park,et al.  Design and experiment of human hand motion driven electromagnetic energy harvester using dual Halbach magnet array , 2017 .

[113]  I. C. Lien,et al.  Array of piezoelectric energy harvesting by the equivalent impedance approach , 2012 .

[114]  Xu Wang,et al.  Frequency Analysis of Vibration Energy Harvesting Systems , 2016 .

[115]  Alessandro Casavola,et al.  A multiobjective control strategy for energy harvesting in regenerative vehicle suspension systems , 2018, Int. J. Control.

[116]  Zhigang Fang,et al.  Experimental Study of Damping and Energy Regeneration Characteristics of a Hydraulic Electromagnetic Shock Absorber , 2013 .

[117]  P. Schalk Els,et al.  Comparison of different gas models to calculate the spring force of a hydropneumatic suspension , 2015 .

[118]  Jeffrey T. Scruggs,et al.  Structural control with regenerative force actuation networks , 2005 .

[119]  Saibal Roy,et al.  Design , fabrication and test of integrated microscale vibration-based electromagnetic generator , 2008 .

[120]  S. Baglio,et al.  Improved Energy Harvesting from Wideband Vibrations by Nonlinear Piezoelectric Converters , 2010 .

[121]  Xiaobiao Shan,et al.  A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms , 2016 .

[122]  David J. Cole,et al.  Truck Suspension Design to Minimize Road Damage , 1996 .

[123]  Lei Zuo,et al.  Assessment of Ride Comfort and Braking Performance Using Energy-Harvesting Shock Absorber , 2015 .

[124]  Mehrdad Moallem,et al.  Development and optimization of an energy-regenerative suspension system under stochastic road excitation , 2015 .

[125]  M.B. Khamesee,et al.  Feasibility study of an electromagnetic shock absorber with position sensing capability , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[126]  Yanping Yuan,et al.  A high-efficiency energy regenerative shock absorber using supercapacitors for renewable energy applications in range extended electric vehicle , 2016 .

[127]  Mehrdad Moallem,et al.  Regenerative Skyhook Control for an Electromechanical Suspension System Using a Switch-Mode Rectifier , 2016, IEEE Transactions on Vehicular Technology.

[128]  Maciej Rosół,et al.  Investigation of an energy harvesting MR damper in a vibration control system , 2016 .

[129]  R. Harne Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. , 2012, The Journal of the Acoustical Society of America.

[130]  Xinping Cao,et al.  Electromagnetic Energy Harvesting Circuit With Feedforward and Feedback DC–DC PWM Boost Converter for Vibration Power Generator System , 2007, IEEE Transactions on Power Electronics.

[131]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[132]  Xu Lin,et al.  Simulation and Performance Evaluation of Hydraulic Transmission Electromagnetic Energy-Regenerative Active Suspension , 2010, 2010 Second WRI Global Congress on Intelligent Systems.

[133]  Alex Elvin,et al.  An experimentally validated electromagnetic energy harvester , 2011 .

[134]  Yuan Wang,et al.  Experimental investigation of non-linear multi-stable electromagnetic-induction energy harvesting mechanism by magnetic levitation oscillation , 2018, Applied Energy.

[135]  Jeffrey Scruggs,et al.  Active, Regenerative Control of Civil Structures , 1999 .

[136]  Xu Wang,et al.  A Study of Linear Regenerative Electromagnetic Shock Absorber System , 2015 .

[137]  Zou You Investigation on Non-linear Characteristics of Hydropneumatic Suspension Modeling and Simulation for Engineering Vehicles , 2005 .

[138]  Donald Margolis,et al.  On the Regenerative Capabilities of Electrodynamic Dampers using Bond Graphs and Model Predictive Control , 2016 .

[139]  Jing-Shan Zhao,et al.  Research on recycling vibration energy of shock absorber , 2015 .

[140]  David Crolla,et al.  OFF-ROAD VEHICLE DYNAMICS , 1981 .

[141]  Amir Khajepour,et al.  Analysis, Prototyping, and Experimental Characterization of an Adaptive Hybrid Electromagnetic Damper for Automotive Suspension Systems , 2017, IEEE Transactions on Vehicular Technology.