MPI/OpenMP Hybrid Parallel Inference Methods for Latent Dirichlet Allocation - Approximation and Evaluation
暂无分享,去创建一个
[1] John Yen,et al. Probabilistic Community Discovery Using Hierarchical Latent Gaussian Mixture Model , 2007, AAAI.
[2] Padhraic Smyth,et al. Scalable Parallel Topic Models , 2006 .
[3] Yee Whye Teh,et al. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation , 2006, NIPS.
[4] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[5] Max Welling,et al. Asynchronous Distributed Learning of Topic Models , 2008, NIPS.
[6] Alexander J. Smola,et al. An architecture for parallel topic models , 2010, Proc. VLDB Endow..
[7] Andrew McCallum,et al. Efficient methods for topic model inference on streaming document collections , 2009, KDD.
[8] Max Welling,et al. Distributed Inference for Latent Dirichlet Allocation , 2007, NIPS.
[9] Feng Yan,et al. Parallel Inference for Latent Dirichlet Allocation on Graphics Processing Units , 2009, NIPS.
[10] Michael I. Jordan,et al. Modeling annotated data , 2003, SIGIR.
[11] Georg Hager,et al. Hybrid MPI/OpenMP Parallel Programming on Clusters of Multi-Core SMP Nodes , 2009, 2009 17th Euromicro International Conference on Parallel, Distributed and Network-based Processing.
[12] Tomonari Masada,et al. Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation with Nvidia CUDA Compatible Devices , 2009, IEA/AIE.
[13] Edward Y. Chang,et al. PLDA: Parallel Latent Dirichlet Allocation for Large-Scale Applications , 2009, AAIM.
[14] Edoardo M. Airoldi,et al. Mixed Membership Stochastic Blockmodels , 2007, NIPS.
[15] Zhiyuan Liu,et al. PLDA+: Parallel latent dirichlet allocation with data placement and pipeline processing , 2011, TIST.
[16] Thomas L. Griffiths,et al. Probabilistic Topic Models , 2007 .
[17] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).