On finitary functors and their presentations

Finitary endofunctors of locally presentable categories are proved to have equational presentations. Special attention is being paid to the category of complete metric spaces and two endofunctors: the Hausdorff functor of all compact subsets and the Kantorovich functor of all tight measures.

[1]  K. Parthasarathy,et al.  Probability measures on metric spaces , 1967 .

[2]  L. Kantorovich On the Translocation of Masses , 2006 .

[3]  Michael Barr,et al.  Terminal Coalgebras in Well-Founded Set Theory , 1993, Theor. Comput. Sci..

[4]  Jiří Adámek,et al.  Relatively terminal coalgebras , 2012 .

[5]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[6]  James Worrell,et al.  A behavioural pseudometric for probabilistic transition systems , 2005, Theor. Comput. Sci..

[7]  Sally Popkorn,et al.  A Handbook of Categorical Algebra , 2009 .

[8]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[9]  James Worrell,et al.  Addendum to "Recursively defined metric spaces without contraction" [TCS 380 (1/2) (2007) 143-163] , 2013, Theor. Comput. Sci..

[10]  Reinhold Heckmann,et al.  Probabilistic Domains , 1994, CAAP.

[11]  Alexander Kurz,et al.  Equational presentations of functors and monads , 2011, Mathematical Structures in Computer Science.

[12]  G. M. Kelly,et al.  Adjunctions whose counits are coequalizers, and presentations of finitary enriched monads , 1993 .

[13]  J. Adámek,et al.  Automata and Algebras in Categories , 1990 .

[14]  James Worrell,et al.  Recursively defined metric spaces without contraction , 2007, Theor. Comput. Sci..

[15]  Bernhard Korte,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[16]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[17]  Samson Abramsky,et al.  Domain theory , 1995, LICS 1995.

[18]  Jiří Adámek,et al.  Free algebras and automata realizations in the language of categories , 1974 .