One-step estimation of spatial dependence parameters: Properties and extensions of the APLE statistic

We consider one-step estimation of parameters that represent the strength of spatial dependence in a geostatistical or lattice spatial model. While the maximum likelihood estimators (MLE) of spatial dependence parameters are known to have various desirable properties, they do not have closed-form expressions. Therefore, we consider a one-step alternative to maximum likelihood estimation based on solving an approximate (i.e., one-step) profile likelihood estimating equation. The resulting approximate profile likelihood estimator (APLE) has a closed-form representation, making it a suitable alternative to the widely used Moran's I statistic. Since the finite-sample and asymptotic properties of one-step estimators of covariance-function parameters have not been studied rigorously, we explore these properties for the APLE of the spatial dependence parameter in the simultaneous autoregressive (SAR) model. Motivated by the APLE statistic's closed from, we develop exploratory spatial data analysis tools that capture regions of local clustering or the extent to which the strength of spatial dependence varies across space. We illustrate these exploratory tools using both simulated data and observed crime rates in Columbus, OH.

[1]  E. Ronchetti,et al.  A journey in single steps: robust one-step M-estimation in linear regression , 2002 .

[2]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[3]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[4]  Marc G. Genton,et al.  Visualizing Influential Observations in Dependent Data , 2010 .

[5]  P. Bickel One-Step Huber Estimates in the Linear Model , 1975 .

[6]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[7]  L. Anselin Local Indicators of Spatial Association—LISA , 2010 .

[8]  J. Tukey,et al.  Transformations Related to the Angular and the Square Root , 1950 .

[9]  E. Lehmann Elements of large-sample theory , 1998 .

[10]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[11]  D. Dey,et al.  A First Course in Linear Model Theory , 2001 .

[12]  N. Cressie,et al.  Spatial Modeling of Regional Variables , 1993 .

[13]  Harry H. Kelejian,et al.  On the asymptotic distribution of the Moran I test statistic with applications , 2001 .

[14]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[15]  Catherine A. Calder,et al.  Beyond Moran's I: Testing for Spatial Dependence Based on the Spatial Autoregressive Model , 2007 .

[16]  James E. Gentle,et al.  Matrix Algebra: Theory, Computations, and Applications in Statistics , 2007 .

[17]  John Hagan,et al.  Divergent Social Worlds: Neighborhood Crime and the Racial-Spatial Divide , 2010 .

[18]  Noel A Cressie,et al.  Likelihood-based estimation for Gaussian MRFs , 2005 .

[19]  Lung-fei Lee,et al.  Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models , 2004 .

[20]  John Law,et al.  Robust Statistics—The Approach Based on Influence Functions , 1986 .

[21]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[22]  Jianqing Fan,et al.  Efficient Estimation and Inferences for Varying-Coefficient Models , 2000 .

[23]  R. Tibshirani,et al.  Varying‐Coefficient Models , 1993 .

[24]  J. Ord,et al.  Spatial Processes. Models and Applications , 1982 .

[25]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[26]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[27]  D. Harville Matrix Algebra From a Statistician's Perspective , 1998 .

[28]  Noel A Cressie,et al.  Beyond Moran's I: Testing for Spatial Dependence Based on the SAR Model , 2005 .