First and second order sufficient optimality conditions in mathematical programming and optimal control

First and second order sufficient conditions are given for infinite-dimensional programming problems with constraints defined by arbitrary closed convex cones. The sufficient conditions are formulated by means of two norms and, thereby, are applicable to optimal control problems with state constraints where the definiteness conditions can only hold in a weaker norm than that in which the functions involved are differentiable. The second order sufficient conditions yield an extension of the classical Riccati-type conditions.

[1]  E B Lee,et al.  Foundations of optimal control theory , 1967 .

[2]  Arthur E. Bryson,et al.  Applied Optimal Control , 1969 .

[3]  D. Jacobson,et al.  New necessary conditions of optimality for control problems with state-variable inequality constraints , 1971 .

[4]  D. O. Norris,et al.  Nonlinear programming applied to state-constrained optimization problems , 1973 .

[5]  S. M. Robinson Stability Theory for Systems of Inequalities. Part I: Linear Systems , 1975 .

[6]  U. Heidemann,et al.  Optimale Steuerprozesse mit Zustandsbeschränkungen , 1975 .

[7]  Wolfgang Warth,et al.  Notwendige Optimalitätsbedingungen und ihre Anwendung , 1978 .

[8]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[9]  J. Zowe,et al.  Second-order necessary and sufficient optimality conditions for infinite-dimensional programming problems , 1979 .

[10]  A. Ioffe Necessary and Sufficient Conditions for a Local Minimum. 3: Second Order Conditions and Augmented Duality , 1979 .

[11]  J. Hirche Kirsch, A./Warth, W./Werner, J., Notwendige Optimalitätsbedingungen und ihre Anwendung. Lecture Notes in Economics and Mathematical Systems 152. Berlin-Heidelberg-New York, Springer-Verlag 1978. V, 157 S., DM 18,–. US $ 9.00 , 1979 .

[12]  Hans Josef Pesch,et al.  Numerical computation of neighboring optimum feedback control schemes in real-time , 1979 .

[13]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.