Matlab Code for Lyapunov Exponents of Fractional-Order Systems

In this paper the Benettin-Wolf algorithm to determine all Lyapunov exponents for a class of fractional-order systems modeled by Caputo's derivative and the corresponding Matlab code are presented. First it is proved that the considered class of fractional-order systems admits the necessary variational system necessary to find the Lyapunov exponents. The underlying numerical method to solve the extended system of fractional order, composed of the initial value problem and the variational system, is the predictor-corrector Adams-Bashforth-Moulton for fractional differential equations. The Matlab program prints and plots the Lyapunov exponents as function of time. Also, the programs to obtain Lyapunov exponents as function of the bifurcation parameter and as function of the fractional order are described. The Matlab program for Lyapunov exponents is developed from an existing Matlab program for Lyapunov exponents of integer order. To decrease the computing time, a fast Matlab program which implements the Adams-Bashforth-Moulton method, is utilized. Four representative examples are considered.

[1]  Aleksander Nawrat,et al.  Lyapunov Exponents for Discrete Time-Varying Systems , 2013 .

[2]  K. Ramasubramanian,et al.  A comparative study of computation of Lyapunov spectra with different algorithms , 1999, chao-dyn/9909029.

[3]  G. A. Leonov,et al.  Lyapunov dimension formula for the global attractor of the Lorenz system , 2015, Commun. Nonlinear Sci. Numer. Simul..

[4]  Miguel A. F. Sanjuán,et al.  Predictability of Chaotic Dynamics , 2017 .

[5]  Dynamical Systems and Numerical Analysis. By A. Stuart & R. Humphries. Cambridge University Press, 1996. 685 pp. ISBN 0-521-49672-1. £40. , 1997 .

[6]  J. Yorke,et al.  The liapunov dimension of strange attractors , 1983 .

[7]  Nikolay V. Kuznetsov,et al.  On differences and similarities in the analysis of Lorenz, Chen, and Lu systems , 2014, Appl. Math. Comput..

[8]  Scott A. Sarra,et al.  On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods , 2011 .

[9]  Pengfei Wang,et al.  Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations , 2011, Numerical Algorithms.

[10]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[11]  Miguel A. F. Sanjuán,et al.  Erratum to: Predictability of Chaotic Dynamics: A Finite-time Lyapunov Exponents Approach , 2017 .

[12]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[13]  Luís Barreira,et al.  Proceedings of Symposia in Pure Mathematics Lectures on Lyapunov Exponents and Smooth Ergodic Theory , 2000 .

[14]  J. Trujillo,et al.  Differential equations of fractional order:methods results and problem —I , 2001 .

[15]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[16]  Holger Kantz,et al.  Practical implementation of nonlinear time series methods: The TISEAN package. , 1998, Chaos.

[17]  Charalampos Skokos,et al.  The Lyapunov Characteristic Exponents and Their Computation , 2008, 0811.0882.

[18]  Marius-F. Danca,et al.  Hidden transient chaotic attractors of Rabinovich–Fabrikant system , 2016, 1604.04055.

[19]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[20]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[21]  Yong Zhou,et al.  Fractional Evolution Equations and Inclusions: Analysis and Control , 2016 .

[22]  Eckmann,et al.  Liapunov exponents from time series. , 1986, Physical review. A, General physics.

[23]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[24]  T. N. Mokaev,et al.  Finite-time Lyapunov dimension and hidden attractor of the Rabinovich system , 2015, 1504.04723.

[25]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[26]  I. Shimada,et al.  A Numerical Approach to Ergodic Problem of Dissipative Dynamical Systems , 1979 .

[27]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; A method for computing all of them. Part 2: Numerical application , 1980 .

[28]  Carl F. Lorenzo,et al.  Equivalence of History-Function Based and Infinite-Dimensional-State Initializations for Fractional-Order Operators , 2013 .

[29]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[30]  R. Hilborn Lyapunov exponents: a tool to explore complex dynamics , 2017 .

[31]  Changpin Li,et al.  On the bound of the Lyapunov exponents for the fractional differential systems. , 2010, Chaos.

[32]  G. A. Leonov,et al.  Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations , 2014, 1410.2016.

[33]  F. Christiansen,et al.  Computing Lyapunov spectra with continuous Gram - Schmidt orthonormalization , 1996, chao-dyn/9611014.

[34]  Guanrong Chen,et al.  Complex dynamics, hidden attractors and continuous approximation of a fractional-order hyperchaotic PWC system , 2018, 1804.10774.

[35]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[36]  Guanrong Chen,et al.  Fractional-order PWC systems without zero Lyapunov exponents , 2018 .

[37]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[38]  L. Tsimring,et al.  The analysis of observed chaotic data in physical systems , 1993 .

[39]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[40]  Igor Podlubny,et al.  Geometric and Physical Interpretation of Fractional Integration and Fractional Differentiation , 2001, math/0110241.

[41]  Nikolay V. Kuznetsov,et al.  Time-Varying Linearization and the Perron Effects , 2007, Int. J. Bifurc. Chaos.

[42]  Kai Diethelm An extension of the well-posedness concept for fractional differential equations of Caputo’s type , 2014 .