Biomimetic doxorubicin loaded polymersomes from hyaluronan-block-poly(gamma-benzyl glutamate) copolymers.

Using "click chemistry" as an easy and versatile synthetic strategy to combine hyaluronan and polyglutamate blocks, we have prepared nanovesicles (polymersomes) that present a controlled size, excellent colloidal stability, and a high loading capacity for hydrophilic and hydrophobic drugs. The unique feature of our concept is the use of hyaluronan, a polysaccharide with known capacity for targeting cancer-related protein receptors, as the hydrophilic portion of a block copolymer system. The cytotoxicity and internalization mechanism of doxorubicin-loaded polymersomes have been evaluated in C6 glioma tumor cell lines. The dual purpose served by hyaluronan, as both a hydrophilic block critical to vesicle formation and a binding agent for biological targets, breaks new ground in terms of multifunctional nanomaterial design for drug delivery.

[1]  D. Adams,et al.  Impact of mechanism of formation on encapsulation in block copolymer vesicles. , 2008, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Frank Bates,et al.  Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. , 2006, Journal of controlled release : official journal of the Controlled Release Society.