The impact of electron beam damage on the detection of indium-rich localisation centres in InGaN quantum wells using transmission electron microscopy

High-resolution transmission electron microscope (HRTEM) lattice fringe images and lattice parameter maps are used to reveal the rapid modification of InGaN quantum wells by the electron beam in a TEM. Images acquired within seconds of first irradiating a region of quantum well do not exhibit the strong nanometre-scale strain contrast which has been reported to signify the presence of very indium-rich regions in InGaN quantum wells. However, after a very short period of irradiation by a relatively low electron beam current density, images of the specimen could be interpreted as indicating the presence of these indium “clusters”. The beam damage is shown to occur for the InGaN quantum wells grown in our lab as well as those in a commercial blue light emitting diode (LED) and in TEM specimens prepared only using mechanical polishing. Possible mechanisms for the beam damage are discussed and we make suggestions as to what may cause exciton localisation in quantum wells that do not contain gross composition fluctuations.

[1]  D. Gerthsen,et al.  Indium distribution in epitaxially grown InGaN layers analyzed by transmission electron microscopy , 2003 .

[2]  D. Gerthsen,et al.  InGaN composition and growth rate during the early stages of metalorganic chemical vapor deposition , 2001 .

[3]  C. Humphreys,et al.  Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells , 2001 .

[4]  L. Ley,et al.  Identification of carbon interstitials in electron-irradiated 6H-SiC by use of a 13 C enriched specimen , 2002 .

[5]  M. O. Manasreh,et al.  III-Nitride Semiconductors: Optical Properties I , 2002 .

[6]  Shuji Nakamura,et al.  The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes , 1998 .

[7]  Shuji Nakamura,et al.  InGaN-based violet laser diodes , 1999 .

[8]  Pierre Gibart,et al.  Metal organic vapour phase epitaxy of GaN and lateral overgrowth , 2004 .

[9]  P. Ruterana,et al.  Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers , 2002 .

[10]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[11]  Fernando Ponce,et al.  Microstructure and electronic properties of InGaN alloys , 2003 .

[12]  M. Jenkins,et al.  Characterisation of Radiation Damage by Transmission Electron Microscopy , 2000 .

[13]  Ian Watson,et al.  An in-situ TEM-cathodoluminescence study of electron beam degradation of luminescence from GaN and in 0.1Ga 0.9N quantum wells , 2002 .

[14]  Yotaro Murakami,et al.  Preparation and optical properties of Ga1−xInxN thin films , 1975 .

[15]  S. Nakamura,et al.  Introduction to Nitride Semiconductor Blue Lasers and Light Emitting Diodes , 2000 .

[16]  Colin J. Humphreys,et al.  Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope , 2003 .

[17]  I. Moerman,et al.  Effect of growth interrupt and growth rate on MOVPE-grown InGaN/GaN MQW structures , 2003 .

[18]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[19]  David C. Joy,et al.  Introduction to analytical electron microscopy , 1979 .

[20]  M. Malac,et al.  Radiation damage in the TEM and SEM. , 2004, Micron.

[21]  N. G. Chew,et al.  The preparation of transmission electron microscope specimens from compound semiconductors by ion milling , 1987 .

[22]  C. Humphreys,et al.  Optical and microstructural studies of InGaN∕GaN single-quantum-well structures , 2005 .

[23]  Chih-Chung Yang,et al.  Dependence of composition fluctuation on indium content in InGaN/GaN multiple quantum wells , 2000 .

[24]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[25]  D. Cherns,et al.  Cathodoluminescence studies of threading dislocations in InGaN/GaN as a function of electron irradiation dose , 2003 .

[26]  Lara K. Teles,et al.  First-principles calculations of the thermodynamic and structural properties of strained 'In IND.X''Ga IND.1-X'N and 'Al IND.X''Ga IND.1-X' N alloys , 2000 .

[27]  L. Hobbs Radiation Effects in Analysis of Inorganic Specimens by TEM , 1979 .

[28]  Kazumi Wada,et al.  Exciton localization in InGaN quantum well devices , 1998 .

[29]  J. Silcox,et al.  Electron-beam-induced damage in wurtzite InN , 2003 .

[30]  Alexander A. Balandin,et al.  Thermal conductivity of GaN films: Effects of impurities and dislocations , 2002 .

[31]  Shuji Nakamura,et al.  Atomic Scale Indium Distribution in a GaN/In0.43Ga0.57N/Al0.1Ga0.9N Quantum Well Structure , 1997 .

[32]  David B. Williams,et al.  Transmission Electron Microscopy: A Textbook for Materials Science , 1996 .

[33]  C. Humphreys,et al.  Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering , 2003 .

[34]  Michael Heuken,et al.  Composition Fluctuations in InGaN Analyzed by Transmission Electron Microscopy , 2000 .

[35]  Chih-Chung Yang,et al.  Nanostructures and Carrier Localization Behaviors of Green-luminescence InGaN/GaN Quantum-well Structures of Various Silicon-doping Conditions , 2004 .

[36]  Earl J. Kirkland,et al.  Advanced Computing in Electron Microscopy , 1998 .

[37]  M. J. Godfrey,et al.  Effects of indium segregation and well-width fluctuations on optical properties of InGaN/GaN quantum wells. , 2001 .

[38]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[39]  S. Mahajan,et al.  Periodic composition modulations in InGaN epitaxial layers , 2001 .