Synthesis and Selective Sensing Properties of rGO/Metal-Coloaded SnO2 Nanofibers

[1]  Jae-Hun Kim,et al.  Ultra-sensitive benzene detection by a novel approach: Core-shell nanowires combined with the Pd-functionalization , 2017 .

[2]  N. Hoa,et al.  Superior enhancement of NO2 gas response using n-p-n transition of carbon nanotubes/SnO2 nanowires heterojunctions , 2017 .

[3]  Giovanni Neri,et al.  Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review , 2016 .

[4]  Jong-Myoung Choi,et al.  Influence of grain size on gas-sensing properties of chemiresistive p-type NiO nanofibers , 2016 .

[5]  Sung Yong Kang,et al.  Selective detection of low concentration toluene gas using Pt-decorated carbon nanotubes sensors , 2016 .

[6]  M. Mirjalili,et al.  Review for application of electrospinning and electrospun nanofibers technology in textile industry , 2016, Journal of Nanostructure in Chemistry.

[7]  S. S. Kim,et al.  Highly Selective Sensing of CO, C6H6, and C7H8 Gases by Catalytic Functionalization with Metal Nanoparticles. , 2016, ACS applied materials & interfaces.

[8]  Jae-Hun Kim,et al.  Effect of Au nanoparticle size on the gas-sensing performance of p-CuO nanowires , 2016 .

[9]  Jae-Hun Kim,et al.  Excellent gas detection of ZnO nanofibers by loading with reduced graphene oxide nanosheets , 2015 .

[10]  Giovanni Neri,et al.  Metal-core@metal oxide-shell nanomaterials for gas-sensing applications: a review , 2015, Journal of Nanoparticle Research.

[11]  Yingkai Liu,et al.  Room temperature ppb level H2S detection of a single Sb-doped SnO2 nanoribbon device , 2015 .

[12]  Dan Han,et al.  Enhanced methanol gas-sensing performance of Ce-doped In2O3 porous nanospheres prepared by hydrothermal method , 2015 .

[13]  S. S. Kim,et al.  Importance of the nanograin size on the H2S-sensing properties of ZnO–CuO composite nanofibers , 2015 .

[14]  Jae-Hun Kim,et al.  Bifunctional Sensing Mechanism of SnO2-ZnO Composite Nanofibers for Drastically Enhancing the Sensing Behavior in H2 Gas. , 2015, ACS applied materials & interfaces.

[15]  G. Neri,et al.  Synthesis, Characterization and Gas Sensing Properties of Ag@α-Fe2O3 Core–Shell Nanocomposites , 2015, Nanomaterials.

[16]  S. Phanichphant,et al.  Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film , 2015 .

[17]  Gwiy-Sang Chung,et al.  Low temperature acetylene gas sensor based on Ag nanoparticles-loaded ZnO-reduced graphene oxide hybrid , 2015 .

[18]  S. S. Kim,et al.  Extraordinary improvement of gas-sensing performances in SnO2 nanofibers due to creation of local p-n heterojunctions by loading reduced graphene oxide nanosheets. , 2015, ACS applied materials & interfaces.

[19]  S. Patel,et al.  Development of ITO thin film sensor for detection of benzene , 2015 .

[20]  Y. Sadaoka,et al.  Influence of VOC structures on sensing property of SmFeO3 semiconductive gas sensor , 2014 .

[21]  S. Ruan,et al.  Fe3O4-NiO core-shell composites: Hydrothermal synthesis and toluene sensing properties , 2014 .

[22]  Ke Dai,et al.  Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment , 2014 .

[23]  Il-Doo Kim,et al.  Highly sensitive and selective hydrogen sulfide and toluene sensors using Pd functionalized WO3 nanofibers for potential diagnosis of halitosis and lung cancer , 2014 .

[24]  Nicola Donato,et al.  Amperometric Sensing of H2O2 using Pt–TiO2/Reduced Graphene Oxide Nanocomposites , 2014 .

[25]  J. H. Lee,et al.  Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview , 2014 .

[26]  N. Yamazoe,et al.  Hollow SnO2/α-Fe2O3 spheres with a double-shell structure for gas sensors , 2014 .

[27]  S. Hur,et al.  Fabrication of novel 2D nio nanosheet branched on 1D-ZnO nanorod arrays for gas sensor application , 2014 .

[28]  S. Hur,et al.  Fabrication of a novel 2D-graphene/2D-NiO nanosheet-based hybrid nanostructure and its use in highly sensitive NO2 sensors , 2013 .

[29]  Xiaobo Zhang,et al.  Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes. , 2013, ACS applied materials & interfaces.

[30]  S. S. Kim,et al.  Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2 , 2013 .

[31]  S. S. Kim,et al.  Decoration of Pd nanoparticles on ZnO-branched nanowires and their application to chemical sensors , 2013 .

[32]  Sun-Woo Choi,et al.  NO2-sensing performance of SnO2 microrods by functionalization of Ag nanoparticles , 2013 .

[33]  Hui Luo,et al.  Reduced Graphene Oxide Mediated SnO2 Nanocrystals for Enhanced Gas-sensing Properties , 2013 .

[34]  Yonglang Guo,et al.  A high-efficiency microwave approach to synthesis of Bi-modified Pt nanoparticle catalysts for ethanol electro-oxidation in alkaline medium , 2013 .

[35]  Teng Fei,et al.  Toluene and ethanol sensing performances of pristine and PdO-decorated flower-like ZnO structures , 2013 .

[36]  Nicola Donato,et al.  Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. , 2012, Angewandte Chemie.

[37]  Mohammad Reza Gholami,et al.  The decoration of TiO2/reduced graphene oxide by Pd and Pt nanoparticles for hydrogen gas sensing , 2012 .

[38]  S. S. Kim,et al.  H2S sensing performance of electrospun CuO-loaded SnO2 nanofibers , 2012 .

[39]  Landon Oakes,et al.  Toward the nanospring-based artificial olfactory system for trace-detection of flammable and explosive vapors , 2012 .

[40]  Fanli Meng,et al.  Synthesis and gas sensing properties of hierarchical meso-macroporous SnO2 for detection of indoor air pollutants , 2012 .

[41]  Li Liu,et al.  High toluene sensing properties of NiO–SnO2 composite nanofiber sensors operating at 330 °C , 2011 .

[42]  S. S. Kim,et al.  Significant enhancement of the NO2 sensing capability in networked SnO2 nanowires by Au nanoparticles synthesized via γ-ray radiolysis. , 2011, Journal of hazardous materials.

[43]  In situ encapsulation of Pt nanoparticles in mesoporous silica: Synthesis, characterisation and effect of particle size on CO oxidation , 2011 .

[44]  Tetsuya Kida,et al.  Microstructure control of TiO2 nanotubular films for improved VOC sensing , 2011 .

[45]  S. S. Kim,et al.  Functionalization of selectively grown networked SnO2 nanowires with Pd nanodots by γ-ray radiolysis , 2011, Nanotechnology.

[46]  Xianzhi Fu,et al.  Synthesis of M@TiO2 (M = Au, Pd, Pt) Core–Shell Nanocomposites with Tunable Photoreactivity , 2011 .

[47]  C. Xie,et al.  Microstructure and gas sensing properties of the ZnO thick film treated by hydrothermal method , 2010 .

[48]  Jinhuai Liu,et al.  Preparation of porous flower-shaped SnO2 nanostructures and their gas-sensing property , 2010 .

[49]  Haibin Yang,et al.  Growth and selective acetone detection based on ZnO nanorod arrays , 2009 .

[50]  Anurat Wisitsoraat,et al.  H2 Sensing Response of Flame-Spray-Made Ru/SnO2 Thick Films Fabricated from Spin-Coated Nanoparticles , 2009, Sensors.

[51]  Tong Zhang,et al.  Enhanced toluene sensing characteristics of TiO2-doped flowerlike ZnO nanostructures , 2009 .

[52]  Jia Zhang,et al.  Study of Pd-Au bimetallic catalysts for CO oxidation reaction by DFT calculations. , 2009, Physical chemistry chemical physics : PCCP.

[53]  G. Neri,et al.  In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors , 2007 .

[54]  Baolin Zhu,et al.  Synthesis and characterization of Pd-doped α-Fe2O3 H2S sensor with low power consumption , 2007 .

[55]  Giorgio Sberveglieri,et al.  Pd- and Ca-doped iron oxide for ethanol vapor sensing , 2007 .

[56]  Nicola Donato,et al.  Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion , 2006 .

[57]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[58]  L. Caputi,et al.  A study of water influence on CO response on gold-doped iron oxide sensors , 2004 .

[59]  P. Sautet,et al.  Chemisorption of Benzene on Pt(111), Pd(111), and Rh(111) Metal Surfaces: A Structural and Vibrational Comparison from First Principles , 2004 .

[60]  W. Y. Wang,et al.  Improvement in gas sensitivity of ZnO thick film to volatile organic compounds (VOCs) by adding TiO2 , 2004 .

[61]  René Lalauze,et al.  Physico-chemical contribution of gold metallic particles to the action of oxygen on tin dioxide sensors , 2003 .

[62]  Mark Saeys,et al.  Density Functional Theory Analysis of Benzene (De)hydrogenation on Pt(111): Addition and Removal of the First Two H-Atoms , 2003 .

[63]  S. Capone,et al.  CO and NO2 sensing properties of doped-Fe2O3 thin films prepared by LPD , 2002 .

[64]  R. M. Lambert,et al.  On the Coverage-Dependent Adsorption Geometry of Benzene Adsorbed on Pd{111}: A Study by Fast XPS and NEXAFS , 2000 .

[65]  Gar B. Hoflund,et al.  Surface characterization study of Ag, AgO, and Ag 2 O using x-ray photoelectron spectroscopy and electron energy-loss spectroscopy , 2000 .

[66]  Andrey Bratov,et al.  Enzyme semiconductor sensor based on butyrylcholinesterase , 1991 .

[67]  Norio Miura,et al.  Electronic Interaction between Metal Additives and Tin Dioxide in Tin Dioxide-Based Gas Sensors , 1988 .

[68]  G. Somorjai,et al.  Thermal decomposition of benzene on the rhodium(111) crystal surface , 1986 .

[69]  Geoffrey I. Webb,et al.  The adsorption and hydrogenation of benzene and toluene on alumina- and silica- supported palladium and platinum catalysts , 1983 .

[70]  Noboru Yamazoe,et al.  Effects of additives on semiconductor gas sensors , 1983 .