The information content of anisotropic Baryon Acoustic Oscillation scale measurements

Anisotropic measurements of the Baryon Acoustic Oscillation (BAO) feature within a galaxy survey enable joint inference about the Hubble parameter H(z) and angular diameter distance DA(z). These measurements are typically obtained from moments of the measured 2-point clustering statistics, with respect to the cosine of the angle to the line of sight mu. The position of the BAO features in each moment depends on a combination of DA(z) and H(z), and measuring the positions in two or more moments breaks this parameter degeneracy. We derive analytic formulae for the parameter combinations measured from moments given by Legendre polynomials, power laws and top-hat Wedges in μ, showing explicitly what is being measured by each in real-space for both the correlation function and power spectrum, and in redshift-space for the power spectrum. The large volume covered by modern galaxy samples means that the correlation function can be well approximated as having no correlations at different mu on the BAO scale, and that the errors on this scale are approximately independent of mu. Using these approximations, we derive the information content of various moments. We show that measurements made using either the monopole and quadrupole, or the monopole and μ2 power-law moment, are optimal for anisotropic BAO measurements, in that they contain all of the available information using two moments, the minimal number required to measure both H(z) and DA(z). We test our predictions using 600 mock galaxy samples, matched to the SDSS-III Baryon Oscillation Spectroscopic Survey CMASS sample, finding a good match to our analytic predictions. Our results should enable the optimal extraction of information from future galaxy surveys such as eBOSS, DESI and Euclid.

[1]  N. Padmanabhan,et al.  Optimal redshift weighting for baryon acoustic oscillations , 2014, 1411.1424.

[2]  Alexander S. Szalay,et al.  The redshift-space galaxy two-point correlation function and baryon acoustic oscillations , 2014, 1408.4648.

[3]  W. Percival,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: potential systematics in fitting of baryon acoustic feature , 2014 .

[4]  W. Percival,et al.  Efficient reconstruction of linear baryon acoustic oscillations in galaxy surveys , 2014, 1408.1348.

[5]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Measuring growth rate and geometry with anisotropic clustering , 2013, 1312.4899.

[6]  Ashley J. Ross,et al.  The clustering of Galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: including covariance matrix errors , 2013, 1312.4841.

[7]  A. Slosar,et al.  DESI and other Dark Energy experiments in the era of neutrino mass measurements , 2013, 1308.4164.

[8]  J. Blazek,et al.  Geometric and dynamic distortions in anisotropic galaxy clustering , 2013, 1311.5563.

[9]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measuring H(z) and DA(z) at z = 0.57 with clustering wedges , 2013, 1303.4391.

[10]  Cameron K. McBride,et al.  Measuring DA and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations , 2012, 1206.6732.

[11]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[12]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[13]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[14]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[15]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[16]  A. Cuesta,et al.  A 2 per cent distance to $z$=0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey , 2012, 1202.0090.

[17]  E. Kazin,et al.  Improving measurements of H(z) and DA(z) by analysing clustering anisotropies , 2011, 1105.2037.

[18]  S. Saito,et al.  Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion , 2011, 1101.4723.

[19]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[20]  N. Padmanabhan,et al.  Constraining anisotropic baryon oscillations , 2008, 0804.0799.

[21]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[22]  D. Eisenstein,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2006, astro-ph/0604362.

[23]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[24]  D. Eisenstein Dark energy and cosmic sound , 2005 .

[25]  Wayne Hu,et al.  Redshifting rings of power , 2003, astro-ph/0306053.

[26]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[27]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[28]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[29]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[30]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[31]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.