Optimisation of multipass turning operations using PSO and GA-AIS algorithms

In this paper, two evolutionary heuristics are proposed to determine the cutting parameters in multipass turning operations. Optimal selection of cutting speed, feed rate, and depth of cut is important in machining operations due to significant influence of these parameters on machining quality and machining economics. This paper is about optimising these three parameters using heuristic methods. The first heuristic implemented in the paper is a simple Particle Swarm Optimisation (PSO) algorithm, and the second heuristic implemented is a hybrid of Genetic Algorithm and Artificial Immune System (GA-AIS). A multipass turning operation with rough machining and then finish machining is considered in this paper. The objective function considered is minimisation of unit production cost that optimises the machining parameters. The performance of the PSO and GA-AIS are evaluated by comparing with the heuristics reported in the literature using a problem set used by other researchers for this problem. The results are presented in tables and figures and indicates the better performance of GA-AIS over PSO and other heuristics reported in the literature.

[1]  Jun Wang,et al.  Optimization of Cutting Conditions for Single Pass Turning Operations Using a Deterministic Approach , 2002 .

[2]  G. C. Onwubolu,et al.  Optimization of multipass turning operations with genetic algorithms , 2001 .

[3]  D. S. Ermer,et al.  The Effect of Experimental Error on the Determination of the Optimum Metal-Cutting Conditions , 1967 .

[4]  Faiz A. Al-Khayyal,et al.  Machine parameter selection for turning with constraints: an analytical approach based on geometric programming , 1991 .

[5]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[6]  D. S. Ermer,et al.  A treatment of errors of estimation in determining optimum machining conditions , 1969 .

[7]  M. S. Shunmugam,et al.  Optimal sub-division of the depth of cut to achieve minimum production cost in multi-pass turning using a genetic algorithm , 1998 .

[8]  Libao An Turning Parameter Optimization for Minimum Production Cost by Integer Programming , 2010, 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization.

[9]  Il-Hwan Kim,et al.  Real-coded genetic algorithm for machining condition optimization , 2008 .

[10]  Ali Rıza Yıldız,et al.  A novel particle swarm optimization approach for product design and manufacturing , 2008 .

[11]  Kazuaki Iwata,et al.  A Probabilistic Approach to the Determination of the Optimum Cutting Conditions , 1972 .

[12]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[13]  Robert E. Smith Machining of metal , 1949 .

[14]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  R. Saravanan,et al.  Selection of machining parameters for constrained machining problem using evolutionary computation , 2007 .

[17]  B. K. Lambert,et al.  Optimization of multi-pass machining operations , 1978 .

[18]  E. Armarego,et al.  The Machining of Metals , 1969 .

[19]  Kazuaki Iwata,et al.  Optimization of Cutting Conditions for Multi-Pass Operations Considering Probabilistic Nature in Machining Processes , 1977 .

[20]  N. R. Abburi,et al.  Multi-objective optimization of multipass turning processes , 2007 .

[21]  D. S. Ermer,et al.  Optimization of Multipass Turning With Constraints , 1981 .

[22]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[23]  Mu-Chen Chen,et al.  Optimization of multipass turning operations with genetic algorithms: A note , 2003 .

[24]  R. V. Narang,et al.  Development of a framework to automate process planning functions and to determine machining parameters , 1993 .

[25]  G. K. Lal,et al.  Determination of optimal subdivision of depth of cut in multipass turning with constraints , 1995 .

[26]  Du-Ming Tsai,et al.  A simulated annealing approach for optimization of multi-pass turning operations , 1996 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Indrajit Mukherjee,et al.  A review of optimization techniques in metal cutting processes , 2006, Comput. Ind. Eng..

[29]  R. Saravanan,et al.  Optimization of multi-pass turning operations using ant colony system , 2003 .

[30]  N. Baskar,et al.  Particle swarm optimization technique for determining optimal machining parameters of different work piece materials in turning operation , 2011 .

[31]  R. C. Creese,et al.  A generalized multi-pass machining model for machining parameter selection in turning , 1995 .

[32]  Kusum Deep,et al.  Optimizing CNC Turning Process Using Real Coded Genetic Algorithm and Differential Evolution , 2011 .

[33]  Yung C. Shin,et al.  Optimization of machining conditions with practical constraints , 1992 .

[34]  Singiresu S Rao,et al.  Determination of Optimum Machining Conditions—Deterministic and Probabilistic Approaches , 1976 .

[35]  Carlos A. Coello Coello,et al.  Hybridizing a genetic algorithm with an artificial immune system for global optimization , 2004 .

[36]  Andrew Runka,et al.  Evolving an edge selection formula for ant colony optimization , 2009, GECCO.