On Matroids and Nonideal Secret Sharing

Secret-sharing schemes are a tool used in many cryptographic protocols. In these schemes, a dealer holding a secret string distributes shares to the parties such that only authorized subsets of participants can reconstruct the secret from their shares. The collection of authorized sets is called an access structure. An access structure is ideal if there is a secret-sharing scheme realizing it such that the shares are taken from the same domain as the secrets. Brickell and Davenport (Journal of Cryptology, 1991) have shown that ideal access structures are closely related to matroids. They give a necessary condition for an access structure to be ideal-the access structure must be induced by a matroid. Seymour (Journal of Combinatorial Theory B, 1992) has proved that the necessary condition is not sufficient: There exists an access structure induced by a matroid that does not have an ideal scheme. The research on access structures induced by matroids is continued in this work. The main result in this paper is strengthening the result of Seymour. It is shown that in any secret-sharing scheme realizing the access structure induced by the Vamos matroid with domain of the secrets of size k, the size of the domain of the shares is at least k + Omega(radic(k)). The second result considers nonideal secret-sharing schemes realizing access structures induced by matroids. It is proved that the fact that an access structure is induced by a matroid implies lower and upper bounds on the size of the domain of shares of subsets of participants even in nonideal schemes (as long as the shares are still relatively short). This generalized results of Brickell and Davenport for ideal schemes. Finally, an example of a nonideal access structure that is nearly ideal is presented.

[1]  Ehud D. Karnin,et al.  On secret sharing systems , 1983, IEEE Trans. Inf. Theory.

[2]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[3]  Amos Beimel,et al.  Universally ideal secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[4]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[5]  Jaume Martí Farré,et al.  On secret sharing schemes, matroids and polymatroids , 2010 .

[6]  Enav Weinreb,et al.  Separating the Power of Monotone Span Programs over Different Fields , 2005, SIAM J. Comput..

[7]  Carles Padró,et al.  On Codes, Matroids, and Secure Multiparty Computation From Linear Secret-Sharing Schemes , 2005, IEEE Transactions on Information Theory.

[8]  Mitsuru Ito,et al.  Secret sharing scheme realizing general access structure , 1989 .

[9]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[10]  Alfredo De Santis,et al.  On the Information Rate of Secret Sharing Schemes , 1996, Theor. Comput. Sci..

[11]  Ernest F. Brickell,et al.  Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.

[12]  Siaw-Lynn Ng,et al.  On the Composition of Matroids and Ideal Secret Sharing Schemes , 2001, Des. Codes Cryptogr..

[13]  Douglas R. Stinson,et al.  Decomposition constructions for secret-sharing schemes , 1994, IEEE Trans. Inf. Theory.

[14]  Alfredo De Santis,et al.  On the Size of Shares for Secret Sharing Schemes , 1991, CRYPTO.

[15]  Carles Padró,et al.  Secret Sharing Schemes with Bipartite Access Structure , 1998, EUROCRYPT.

[16]  Amos Beimel,et al.  On Matroids and Non-ideal Secret Sharing , 2006, TCC.

[17]  Frantisek Matús,et al.  Matroid representations by partitions , 1999, Discret. Math..

[18]  Nira Dyn,et al.  Multipartite Secret Sharing by Bivariate Interpolation , 2008, Journal of Cryptology.

[19]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[20]  Yuval Ishai,et al.  On the power of nonlinear secret-sharing , 2001, Proceedings 16th Annual IEEE Conference on Computational Complexity.

[21]  Siaw-Lynn Ng A Representation of a Family of Secret Sharing Matroids , 2003, Des. Codes Cryptogr..

[22]  F. Mat Two Constructions on Limits of Entropy Functions , 2007, IEEE Trans. Inf. Theory.

[23]  Keith M. Martin,et al.  Ideal secret sharing schemes with multiple secrets , 1996, Journal of Cryptology.

[24]  Weighted Threshold Secret Sharing Schemes , 1999, Inf. Process. Lett..

[25]  Kaoru Kurosawa,et al.  Nonperfect Secret Sharing Schemes and Matroids , 1994, EUROCRYPT.

[26]  K. Martin,et al.  Perfect secret sharing schemes on five participants , 1996 .

[27]  Carles Padró,et al.  Secret Sharing Schemes with Three or Four Minimal Qualified Subsets , 2005, Des. Codes Cryptogr..

[28]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[29]  Ingemar Ingemarsson,et al.  A Construction of Practical Secret Sharing Schemes using Linear Block Codes , 1992, AUSCRYPT.

[30]  Marten van Dijk On the information rate of perfect secret sharing schemes , 1995, Des. Codes Cryptogr..

[31]  Hung-Min Sun,et al.  Decomposition Construction for Secret Sharing Schemes with Graph Access Structures in Polynomial Time , 2010, SIAM J. Discret. Math..

[32]  Moni Naor,et al.  Access Control and Signatures via Quorum Secret Sharing , 1998, IEEE Trans. Parallel Distributed Syst..

[33]  Mitsuru Ito,et al.  Multiple assignment scheme for sharing secret , 1993, Journal of Cryptology.

[34]  Michael O. Rabin,et al.  Randomized byzantine generals , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[35]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[36]  Ueli Maurer,et al.  General Secure Multi-party Computation from any Linear Secret-Sharing Scheme , 2000, EUROCRYPT.

[37]  Tamir Tassa,et al.  Characterizing Ideal Weighted Threshold Secret Sharing , 2008, SIAM J. Discret. Math..

[38]  Tamir Tassa Hierarchical Threshold Secret Sharing , 2004, TCC.

[39]  László Csirmaz,et al.  The Size of a Share Must Be Large , 1994, Journal of Cryptology.

[40]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[41]  Nikolai K. Vereshchagin,et al.  A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..

[42]  Alfredo De Santis,et al.  Probability of Shares in Secret Sharing Schemes , 1999, Inf. Process. Lett..

[43]  Carles Padró,et al.  Secret sharing schemes on access structures with intersection number equal to one , 2006, Discret. Appl. Math..

[44]  Marten van Dijk A Linear Construction of Secret Sharing Schemes , 1997, Des. Codes Cryptogr..

[45]  Alfredo De Santis,et al.  Graph decompositions and secret sharing schemes , 2004, Journal of Cryptology.

[46]  Frantisek Matús,et al.  Adhesivity of polymatroids , 2007, Discret. Math..

[47]  Ernest F. Brickell,et al.  On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.

[48]  Matthew K. Franklin,et al.  Weakly-Private Secret Sharing Schemes , 2007, TCC.

[49]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[50]  Ken Martin Discrete Structures in the Theory of Secret Sharing , 1991 .

[51]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[52]  Carles Padró,et al.  On Codes, Matroids, and Secure Multiparty Computation From Linear Secret-Sharing Schemes , 2008, IEEE Trans. Inf. Theory.

[53]  Douglas R. Stinson,et al.  An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..

[54]  Yvo Desmedt,et al.  Shared Generation of Authenticators and Signatures (Extended Abstract) , 1991, CRYPTO.

[55]  Josh Benaloh,et al.  Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.

[56]  Zhen Zhang,et al.  On a new non-Shannon-type information inequality , 2002, Proceedings IEEE International Symposium on Information Theory,.

[57]  Ernest F. Brickell,et al.  Some improved bounds on the information rate of perfect secret sharing schemes , 2006, Journal of Cryptology.

[58]  Alexei E. Ashikhmin,et al.  Almost Affine Codes , 1998, Des. Codes Cryptogr..