Minimal canonical comprehensive Gröbner systems

This is the continuation of Montes' paper ''On the canonical discussion of polynomial systems with parameters''. In this paper, we define the Minimal Canonical Comprehensive Grobner System of a parametric ideal and fix under which hypothesis it exists and is computable. An algorithm to obtain a canonical description of the segments of the Minimal Canonical CGS is given, thus completing the whole MCCGS algorithm (implemented in Maple and Singular). We show its high utility for applications, such as automatic theorem proving and discovering, and compare it with other existing methods. A way to detect a counterexample to deny its existence is outlined, although the high number of tests done give evidence of the existence of the Minimal Canonical CGS.

[1]  Volker Weispfenning,et al.  Canonical comprehensive Gröbner bases , 2002, ISSAC '02.

[2]  Akira Suzuki,et al.  A simple algorithm to compute comprehensive Gröbner bases using Gröbner bases , 2006, ISSAC '06.

[3]  Katsusuke Nabeshima A Computation Method for ACGB-V , 2005, Algorithmic Algebra and Logic.

[4]  Michael Wibmer,et al.  Gröbner bases for families of affine or projective schemes , 2006, J. Symb. Comput..

[5]  佐藤 洋祐,et al.  特集 Comprehensive Grobner Bases , 2007 .

[6]  Michael Kalkbrener,et al.  On the Stability of Gröbner Bases Under Specializations , 1997, J. Symb. Comput..

[7]  Volker Weispfenning,et al.  Comprehensive Gröbner Bases , 1992, J. Symb. Comput..

[8]  Laureano González-Vega,et al.  Hilbert Stratification and Parametric Gröbner Bases , 2005, CASC.

[9]  Antonio Montes,et al.  Improving the DISPGB algorithm using the discriminant ideal , 2006, J. Symb. Comput..

[10]  Antonio Montes Canonical discussion of polynomial systems with parameters , 2006 .

[11]  Antonio Montes,et al.  A New Algorithm for Discussing Gröbner Bases with Parameters , 2002, J. Symb. Comput..

[12]  Akira Suzuki,et al.  An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.

[13]  Tomás Recio,et al.  Automatic Discovery of Geometry Theorems Using Minimal Canonical Comprehensive Gröbner Systems , 2006, Automated Deduction in Geometry.

[14]  Akira Suzuki,et al.  An alternative approach to comprehensive Gröbner bases , 2002, ISSAC '02.