Mist/Steam Heat Transfer With Jet Impingement Onto a Concave Surface

Internal mist/steam blade cooling technology has been considered for the future generation of Advanced Turbine Systems (ATS). Fine water droplets about 5 μm were carried by steam through a single slot jet onto a concave heated target surface in a confined channel to simulate inner surface cooling at the leading edge of a turbine blade. Experiments covered Reynolds numbers from 7,500 to 22,000 and heat fluxes from 3 to 21 kW/m2 . The general level of heat transfer coefficient is, within experimental uncertainty, the same as the flat surface at comparable conditions. The experimental results indicate that the cooling is enhanced significantly near the stagnation point by the mist, decreasing downstream. Unlike impingement onto a flat plate the enhancement continues at all points downstream. Similar to the results of the flat surface, the heat transfer enhancement declines at higher heat fluxes. Up to 200% heat transfer enhancement at the stagnation point was achieved by injecting approximately 0.5% of mist.Copyright © 2002 by ASME