Improved encoding and decoding for non-adaptive threshold group testing

The goal of threshold group testing is to identify up to $d$ defective items among a population of $n$ items, where $d$ is usually much smaller than $n$. A test is positive if it has at least $u$ defective items and negative otherwise. Our objective is to identify defective items in sublinear time the number of items, e.g., $\mathrm{poly}(d, \ln{n}),$ by using the number of tests as low as possible. In this paper, we reduce the number of tests to $O \left( h \times \frac{d^2 \ln^2{n}}{\mathsf{W}^2(d \ln{n})} \right)$ and the decoding time to $O \left( \mathrm{dec}_0 \times h \right),$ where $\\mathrm{dec}_0 = O \left( \frac{d^{3.57} \ln^{6.26}{n}}{\mathsf{W}^{6.26}(d \ln{n})} \right) + O \left( \frac{d^6 \ln^4{n}}{\mathsf{W}^4(d \ln{n})} \right)$, $h = O\left( \frac{d_0^2 \ln{\frac{n}{d_0}}}{(1-p)^2} \right)$ , $d_0 = \max\{u, d - u \}$, $p \in [0, 1),$ and $\mathsf{W}(x) = \Theta \left( \ln{x} - \ln{\ln{x}} \right).$ If the number of tests is increased to $O\left( h \times \frac{d^2\ln^3{n}}{\mathsf{W}^2(d \ln{n})} \right),$ the decoding complexity is reduced to $O \left(\mathrm{dec}_1 \times h \right),$ where $\mathrm{dec}_1 = \max \left\{ \frac{d^2 \ln^3{n}}{\mathsf{W}^2(d \ln{n})}, \frac{ud \ln^4{n}}{\mathsf{W}^3(d \ln{n})} \right\}.$ Moreover, our proposed scheme is capable of handling errors in test outcomes.

[1]  Atri Rudra,et al.  Efficiently Decodable Error-Correcting List Disjunct Matrices and Applications - (Extended Abstract) , 2011, ICALP.

[2]  Thach V. Bui,et al.  A framework for generalized group testing with inhibitors and its potential application in neuroscience , 2018, ArXiv.

[3]  Peter Damaschke Threshold Group Testing , 2005, Electron. Notes Discret. Math..

[4]  Tomasz Jurdzinski,et al.  Subquadratic Non-adaptive Threshold Group Testing , 2017, FCT.

[5]  Mayank Bakshi,et al.  GROTESQUE: Noisy Group Testing (Quick and Efficient) , 2013, 2013 51st Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[6]  Thach V. Bui,et al.  Efficiently Decodable Non-Adaptive Threshold Group Testing , 2019, IEEE Transactions on Information Theory.

[7]  Hung-Lin Fu,et al.  An upper bound of the number of tests in pooling designs for the error-tolerant complex model , 2008, Optim. Lett..

[8]  Arkadii G. D'yachkov,et al.  Separable Codes for the Symmetric Multiple-Access Channel , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[9]  Vladimir S. Lebedev,et al.  Superimposed Codes and Threshold Group Testing , 2014, Information Theory, Combinatorics, and Search Theory.

[10]  Thach V. Bui,et al.  Efficient (nonrandom) construction and decoding of non-adaptive group testing , 2019, J. Inf. Process..

[11]  Mahdi Cheraghchi Improved Constructions for Non-adaptive Threshold Group Testing , 2010, ICALP.

[12]  Ramtin Pedarsani,et al.  Sub-linear Time Stochastic Threshold Group Testing via Sparse-Graph Codes , 2018, 2018 IEEE Information Theory Workshop (ITW).

[13]  Hung-Lin Fu,et al.  Nonadaptive algorithms for threshold group testing , 2009, Discret. Appl. Math..

[14]  Mayank Bakshi,et al.  Stochastic threshold group testing , 2013, 2013 IEEE Information Theory Workshop (ITW).

[15]  R. Dorfman The Detection of Defective Members of Large Populations , 1943 .

[16]  Mahdi Cheraghchi Noise-resilient group testing: Limitations and constructions , 2013, Discret. Appl. Math..

[17]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[18]  Ely Porat,et al.  Search Methodologies , 2022 .