The Polya-Gamma Gibbs sampler for Bayesian logistic regression is uniformly ergodic
暂无分享,去创建一个
[1] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[2] L. Tierney. Markov Chains for Exploring Posterior Distributions , 1994 .
[3] J. Pitman,et al. Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions , 1999, math/9912170.
[4] Ming-Hui Chen,et al. Propriety of posterior distribution for dichotomous quantal response models , 2000 .
[5] Galin L. Jones,et al. Honest Exploration of Intractable Probability Distributions via Markov Chain Monte Carlo , 2001 .
[6] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[7] C. Holmes,et al. Bayesian auxiliary variable models for binary and multinomial regression , 2006 .
[8] J. Hobert,et al. Convergence rates and asymptotic standard errors for Markov chain Monte Carlo algorithms for Bayesian probit regression , 2007 .
[9] Murali Haran,et al. Markov chain Monte Carlo: Can we trust the third significant figure? , 2007, math/0703746.
[10] James P. Hobert,et al. The data augmentation algorithm : Theory and methodology , 2009 .
[11] S. Frühwirth-Schnatter,et al. Data Augmentation and MCMC for Binary and Multinomial Logit Models , 2010 .
[12] James P. Hobert,et al. The Data Augmentation Algorithm: Theory and Methodology , 2011 .
[13] James G. Scott,et al. Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables , 2012, 1205.0310.