Complete intersection hyperk\"{a}hler fourfolds with respect to equivariant vector bundles over rational homogeneous varieties of Picard number one

We classify fourfolds with trivial canonical bundle which are zero loci of general global sections of completely reducible equivariant vector bundles over exceptional homogeneous varieties of Picard number one. As a result, we see that there exist no hyperkähler fourfolds among them. This completes similar classifications by Benedetti and Inoue–Ito–Miura for Grassmannians and isotropic (symplectic or orthogonal) Grassmannians.

[1]  Fredrik Meyer,et al.  Representation theory , 2015 .

[2]  C. Voisin,et al.  Hyper-Kähler fourfolds and Grassmann geometry , 2009, 0904.3974.

[3]  Oliver Küchle On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians , 1995 .

[4]  Laurent Manivel,et al.  On the projective geometry of rational homogeneous varieties , 2003 .

[5]  Kunihiko Kodaira,et al.  Complex manifolds and deformation of complex structures , 1985 .

[6]  Roger W. Carter,et al.  Lie Algebras of Finite and Affine Type , 2005 .

[7]  Makoto Miura,et al.  Complete intersection Calabi–Yau manifolds with respect to homogeneous vector bundles on Grassmannians , 2016, Mathematische Zeitschrift.

[8]  J. Weyman Cohomology of Vector Bundles and Syzygies , 2003 .

[9]  V. Benedetti Sous-variétés spéciales des espaces homogènes , 2018 .

[10]  Vladimiro Benedetti Manifolds of low dimension with trivial canonical bundle in Grassmannians , 2016, 1609.02695.

[11]  A. Beauville,et al.  Variétés Kähleriennes dont la première classe de Chern est nulle , 1983 .

[12]  P. Griffiths Some geometric and analytic properties of homogeneous complex manifolds , 1963 .

[13]  J. Gray,et al.  Topological invariants and fibration structure of complete intersection Calabi-Yau four-folds , 2014, 1405.2073.

[14]  L. Manivel On the derived category of the Cayley plane , 2009, 0907.2784.

[15]  Giovanni Mongardi,et al.  Fano Varieties of K3-Type and IHS Manifolds , 2019, 1904.05679.

[16]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .