Intrinsically narrowband pair photon generation in microstructured fibres

In this paper, we study the tailoring of photon spectral properties generated by four-wave mixing in a birefringent photonic crystal fibre (PCF). The aim is to produce intrinsically narrow-band photons and hence to achieve high non-classical interference visibility and generate high-fidelity entanglement without any requirement for spectral filtering, leading to high effective detection efficiencies. We show unfiltered Hong-Ou-Mandel interference visibilities of 77% between photons from the same PCF and 80% between separate sources. We compare results from modelling the PCF to these experiments and analyse photon purities.

[1]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[2]  Yongmin Li,et al.  Efficient quantum memory for light , 2010, Nature.

[3]  M. Matsui,et al.  Heralded single photon source at 1550 nm from pulsed parametric down conversion , 2006, quant-ph/0611112.

[4]  Teich,et al.  Two-photon interference in a Mach-Zehnder interferometer. , 1990, Physical review letters.

[5]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2004, quant-ph/0403062.

[6]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[7]  G. D’Ariano,et al.  Maximum-likelihood estimation of the density matrix , 1999, quant-ph/9909052.

[8]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[9]  Brian J. Smith,et al.  Tailored photon-pair generation in optical fibers. , 2008, Physical review letters.

[10]  Paul L Voss,et al.  Optical-fiber source of polarization-entangled photons in the 1550 nm telecom band. , 2004, Physical review letters.

[11]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[12]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[13]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[14]  J. D. Franson,et al.  Probabilistic quantum logic operations using polarizing beam splitters , 2001, quant-ph/0107091.

[15]  Christine Silberhorn,et al.  Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion , 2006, quant-ph/0611019.

[16]  N. K. Langford,et al.  Linear optical controlled- NOT gate in the coincidence basis , 2002 .

[17]  P. Roberts,et al.  Robust photonic band gaps for hollow core guidance in PCF made from high index glass. , 2003, Optics express.

[18]  H. Weinfurter,et al.  Linear optics controlled-phase gate made simple. , 2005, Physical Review Letters.

[19]  Offir Cohen,et al.  Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber. , 2007, Optics express.

[20]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[21]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[22]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[23]  K J Resch,et al.  Demonstration of a simple entangling optical gate and its use in bell-state analysis. , 2005, Physical review letters.

[24]  Keiji Sasaki,et al.  Beating the Standard Quantum Limit with Four-Entangled Photons , 2007, Science.

[25]  W. Marsden I and J , 2012 .

[26]  Jeremy L O'Brien,et al.  Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. , 2007, Physical review letters.

[27]  Alex S. Clark,et al.  All-optical-fiber polarization-based quantum logic gate , 2009 .

[28]  M. J. Fitch,et al.  Experimental controlled-NOT logic gate for single photons in the coincidence basis , 2003, quant-ph/0303095.

[29]  Brian J Smith,et al.  Conditional preparation of single photons using parametric downconversion: a recipe for purity , 2008, 0807.1409.

[30]  Thomas Jennewein,et al.  A wavelength-tunable fiber-coupled source of narrowband entangled photons. , 2007, Optics express.

[31]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[34]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[35]  O. Alibart,et al.  Photon pair generation using four-wave mixing in a microstructured fibre: theory versus experiment , 2006 .

[36]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[37]  N. Gisin,et al.  Quantum Communication , 2007, quant-ph/0703255.