Co-Clustering of ordinal data via latent continuous random variables and a classification EM algorithm

This paper is about the co-clustering of ordinal data. Such data are very common on e-commerce platforms where customers rank the products/services they bought. More in details, we focus on arrays of ordinal (possibly missing) data involving two disjoint sets of individuals/objects corresponding to the rows/columns of the arrays. Typically, an observed entry (i, j) in the array is an ordinal score assigned by the individual/row i to the object/column j. A generative model for arrays of ordinal data is introduced along with an inference algorithm for parameters estimation. The model relies on latent continuous random variables and the fitting allows to simultaneously co-cluster the rows and columns of an array. The estimation of the model parameters is performed via a classification expectation maximization (C-EM) algorithm. A model selection criterion is formally obtained to select the number of row and column clusters. In order to show that our approach reaches and often outperforms the state of the art, we carry out numerical experiments on synthetic data. Finally, applications on real datasets highlight the model capacity to deal with very sparse arrays.

[1]  C. Gouget Utilisation des modèles de mélange pour la classification automatique de données ordinales , 2006 .

[2]  A. Agresti,et al.  Analysis of Ordinal Categorical Data. , 1985 .

[3]  Daniel Fernández Martínez Mixture-based Clustering for the Ordered Stereotype Model , 2015 .

[4]  Monia Ranalli,et al.  Mixture models for ordinal data: a pairwise likelihood approach , 2014, Statistics and Computing.

[5]  Gérard Govaert,et al.  Estimation and selection for the latent block model on categorical data , 2015, Stat. Comput..

[6]  Angela D'Elia,et al.  A mixture model for preferences data analysis , 2005, Comput. Stat. Data Anal..

[7]  Charles Bouveyron,et al.  The functional latent block model for the co‐clustering of electricity consumption curves , 2018 .

[8]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[9]  Oleg Urminsky,et al.  A study into mechanisms of attitudinal scale conversion: A randomized stochastic ordering approach , 2019 .

[10]  L. Scrucca Genetic Algorithms for Subset Selection in Model-Based Clustering , 2016 .

[11]  Gérard Govaert,et al.  Model selection for the binary latent block model , 2012 .

[12]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[13]  Julien Jacques,et al.  Model-based co-clustering for ordinal data , 2017, Comput. Stat. Data Anal..

[14]  M. Giordan,et al.  A Clustering Method for Categorical Ordinal Data , 2011 .

[15]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[16]  Aurore Lomet,et al.  Sélection de modèle pour la classification croisée de données continues , 2013 .

[17]  Gérard Govaert,et al.  blockcluster: An R Package for Model Based Co-Clustering , 2017 .

[18]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..

[19]  J. Podani Braun-Blanquet's legacy and data analysis in vegetation science , 2006 .

[20]  P. Latouche,et al.  Model selection and clustering in stochastic block models based on the exact integrated complete data likelihood , 2015 .

[21]  I. C. Gormley,et al.  A mixture of experts latent position cluster model for social network data , 2010 .

[22]  William R. Dillon,et al.  Marketing research in a marketing environment , 1990 .

[23]  G. Govaert,et al.  Latent Block Model for Contingency Table , 2010 .

[24]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[25]  Gérard Govaert,et al.  Block clustering with Bernoulli mixture models: Comparison of different approaches , 2008, Comput. Stat. Data Anal..

[26]  Gilles Celeux,et al.  The Latent Block Model: a useful model for high dimensional data , 2017 .

[27]  Damien McParland,et al.  Model based clustering for mixed data: clustMD , 2015, Advances in Data Analysis and Classification.

[28]  Nial Friel,et al.  Inferring structure in bipartite networks using the latent blockmodel and exact ICL , 2014, Network Science.

[29]  G. Celeux,et al.  A Classification EM algorithm for clustering and two stochastic versions , 1992 .

[30]  Julien Jacques,et al.  Model-based clustering of multivariate ordinal data relying on a stochastic binary search algorithm , 2015, Statistics and Computing.