Sequence analysis of a functional Drosophila centromere.

Centromeres are the site for kinetochore formation and spindle attachment and are embedded in heterochromatin in most eukaryotes. The repeat-rich nature of heterochromatin has hindered obtaining a detailed understanding of the composition and organization of heterochromatic and centromeric DNA sequences. Here, we report the results of extensive sequence analysis of a fully functional centromere present in the Drosophila Dp1187 minichromosome. Approximately 8.4% (31 kb) of the highly repeated satellite DNA (AATAT and TTCTC) was sequenced, representing the largest data set of Drosophila satellite DNA sequence to date. Sequence analysis revealed that the orientation of the arrays is uniform and that individual repeats within the arrays mostly differ by rare, single-base polymorphisms. The entire complex DNA component of this centromere (69.7 kb) was sequenced and assembled. The 39-kb "complex island" Maupiti contains long stretches of a complex A+T rich repeat interspersed with transposon fragments, and most of these elements are organized as direct repeats. Surprisingly, five single, intact transposons are directly inserted at different locations in the AATAT satellite arrays. We find no evidence for centromere-specific sequences within this centromere, providing further evidence for sequence-independent, epigenetic determination of centromere identity and function in higher eukaryotes. Our results also demonstrate that the sequence composition and organization of large regions of centric heterochromatin can be determined, despite the presence of repeated DNA.

[1]  K. Holzmann,et al.  Distribution and linkage of repetitive clusters from the heterochromatic region of human chromosome 22 , 1996, Chromosome Research.

[2]  R. Hochstenbach,et al.  Degenerating gypsy retrotransposons in a male fertility gene on the Y chromosome of Drosophila hydei , 1994, Journal of Molecular Evolution.

[3]  H. Bünemann,et al.  Towards a physical map of the fertility genes on the heterochromatic Y chromosome of Drosophila hydei: Families of repetitive sequences transcribed on the lampbrush loops Nooses and Threads are organized in extended clusters of several hundred kilobases , 1992, Molecular and General Genetics MGG.

[4]  I. Dunham,et al.  Rapid generation of chromosome-specific alphoid DNA probes using the polymerase chain reaction , 2004, Human Genetics.

[5]  D. Schwartz,et al.  Analysis of DNA restriction fragments greater than 5.7 Mb in size from the centromeric region of human chromosomes , 2004, Mammalian Genome.

[6]  G. Karpen,et al.  A Chromosome RNAissance , 2002, Cell.

[7]  G. Karpen,et al.  Efficient recovery of centric heterochromatin P-element insertions in Drosophila melanogaster. , 2002, Genetics.

[8]  J. Workman,et al.  Chromosome and expression mechanisms: a year dominated by histone modifications, transitory and remembered. , 2002, Current opinion in genetics & development.

[9]  Gary H Karpen,et al.  Conserved organization of centromeric chromatin in flies and humans. , 2002, Developmental cell.

[10]  G. Karpen,et al.  Modifiers of terminal deficiency-associated position effect variegation in Drosophila. , 2002, Genetics.

[11]  M. Plohl,et al.  Sequence of PRAT Satellite DNA ``Frozen'' in Some Coleopteran Species , 2002, Journal of Molecular Evolution.

[12]  R. Allshire,et al.  Requirement of Heterochromatin for Cohesion at Centromeres , 2001, Science.

[13]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[14]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[15]  Gary H. Karpen,et al.  Determining centromere identity: cyclical stories and forking paths , 2001, Nature Reviews Genetics.

[16]  T. Fischer,et al.  The centromere1 (CEN1) region of Arabidopsis thaliana: architecture and functional impact of chromatin. , 2001, The Plant journal : for cell and molecular biology.

[17]  S. Schwartz,et al.  Cytogenetic analysis and construction of a BAC contig across a common neocentromeric region from 9p , 2001, Chromosoma.

[18]  G. Karpen,et al.  The activation of a neocentromere in Drosophila requires proximity to an endogenous centromere. , 2001, Genetics.

[19]  G. Karpen,et al.  The Drosophila Su(var)2-10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. , 2001, Genes & development.

[20]  D. Magliano,et al.  A 330 kb CENP‐A binding domain and altered replication timing at a human neocentromere , 2001, The EMBO journal.

[21]  K. Sullivan,et al.  A solid foundation: functional specialization of centromeric chromatin. , 2001, Current opinion in genetics & development.

[22]  G. Karpen,et al.  Identification of chromosome inheritance modifiers in Drosophila melanogaster. , 2001, Genetics.

[23]  D. Magliano,et al.  A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. , 2001, Genome research.

[24]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[25]  D. Sherratt,et al.  Chromosome segregation. , 2001, Current opinion in microbiology.

[26]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[27]  The Arabidopsis Genome Initiative Analysis of the genome sequence of the flowering plant Arabidopsis thaliana , 2000, Nature.

[28]  R. Critcher,et al.  Distribution of gamma satellite DNA on the human X and Y chromosomes suggests that it is not required for mitotic centromere function , 2000, Chromosoma.

[29]  E. Eichler,et al.  The mosaic structure of human pericentromeric DNA: a strategy for characterizing complex regions of the human genome. , 2000, Genome research.

[30]  K. Choo,et al.  The 10q25 neocentromere and its inactive progenitor have identical primary nucleotide sequence: further evidence for epigenetic modification. , 2000, Genome research.

[31]  Stephen M. Mount,et al.  The genome sequence of Drosophila melanogaster. , 2000, Science.

[32]  Eugene W. Myers,et al.  A whole-genome assembly of Drosophila. , 2000, Science.

[33]  J. Koch Neocentromeres and alpha satellite: a proposed structural code for functional human centromere DNA. , 2000, Human molecular genetics.

[34]  M. Adams,et al.  Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. , 2000, Human molecular genetics.

[35]  H. Kotani,et al.  The size and sequence organization of the centromeric region of arabidopsis thaliana chromosome 5. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[36]  M. Marra,et al.  Genetic definition and sequence analysis of Arabidopsis centromeres. , 1999, Science.

[37]  G. Karpen,et al.  Centromere proteins and chromosome inheritance: a complex affair. , 1999, Current opinion in genetics & development.

[38]  H. Kotani,et al.  Structural analysis and complete physical map of Arabidopsis thaliana chromosome 5 including centromeric and telomeric regions. , 1999, DNA research : an international journal for rapid publication of reports on genes and genomes.

[39]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[40]  H. Willard,et al.  Orangutan α-satellite monomers are closely related to the human consensus sequence , 1998, Mammalian Genome.

[41]  B. Wakimoto,et al.  Beyond the Nucleosome: Epigenetic Aspects of Position–Effect Variegation in Drosophila , 1998, Cell.

[42]  G. Karpen,et al.  Centromeres Take Flight: Alpha Satellite and the Quest for the Human Centromere , 1998, Cell.

[43]  D. P. Moore,et al.  Chromosome segregation during meiosis: building an unambivalent bivalent. , 1998, Current topics in developmental biology.

[44]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[45]  J. Abad,et al.  Organization of DNA sequences near the centromere of the Drosophila melanogaster Y chromosome , 1998, Chromosoma.

[46]  G. Karpen,et al.  Molecular Structure of a Functional Drosophila Centromere , 1997, Cell.

[47]  G. Karpen,et al.  The case for epigenetic effects on centromere identity and function. , 1997, Trends in genetics : TIG.

[48]  K. Sullivan,et al.  Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate , 1997, Current Biology.

[49]  J. Braman,et al.  PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. , 1996, Nucleic acids research.

[50]  J. Sedat,et al.  Direct Evidence of a Role for Heterochromatin in Meiotic Chromosome Segregation , 1996, Cell.

[51]  G. Karpen,et al.  Centric Heterochromatin and the Efficiency of Achiasmate Disjunction in Drosophila Female Meiosis , 1996, Science.

[52]  J Gosden,et al.  Characterization of a chromosome-specific chimpanzee alpha satellite subset: evolutionary relationship to subsets on human chromosomes. , 1996, Genomics.

[53]  R. Nagoshi,et al.  A P element containing suppressor of hairy-wing binding regions has novel properties for mutagenesis in Drosophila melanogaster. , 1995, Genetics.

[54]  G. Karpen,et al.  Islands of complex DNA are widespread in Drosophila centric heterochromatin. , 1995, Genetics.

[55]  H. Willard,et al.  Epigenetic regulation of gene expression: the effect of altered chromatin structure from yeast to mammals. , 1995, Human molecular genetics.

[56]  G. Karpen,et al.  Localization of centromere function in a drosophila minichromosome , 1995, Cell.

[57]  P. Dimitri,et al.  Cis-effects of heterochromatin on heterochromatic and euchromatic gene activity in Drosophila melanogaster. , 1995, Genetics.

[58]  S. Elgin,et al.  Position effect variegation in Drosophila is associated with an altered chromatin structure. , 1995, Genes & development.

[59]  C. Caggese,et al.  Transposable elements are stable structural components of Drosophila melanogaster heterochromatin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[60]  G. Karpen,et al.  Interactions between the nod + kinesin-like gene and extracentromeric sequences are required for transmission of a drosophila minichromosome , 1995, Cell.

[61]  B. Wakimoto,et al.  Heterochromatin and gene expression in Drosophila. , 1995, Annual review of genetics.

[62]  A. Spradling,et al.  A transposable element can drive the concerted evolution of tandemly repetitious DNA. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[63]  S. Devine,et al.  Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. , 1994, Nucleic acids research.

[64]  B. Vig Do specific nucleotide bases constitute the centromere? , 1994, Mutation research.

[65]  R. Allshire,et al.  Position effect variegation at fission yeast centromeres , 1994, Cell.

[66]  A. Hilliker,et al.  Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. , 1993, Genetics.

[67]  M. Baum,et al.  Structure and function of Schizosaccharomyces pombe centromeres. , 1993, Cold Spring Harbor symposia on quantitative biology.

[68]  A. Spradling,et al.  Analysis of subtelomeric heterochromatin in the Drosophila minichromosome Dp1187 by single P element insertional mutagenesis. , 1992, Genetics.

[69]  O. Niwa,et al.  A low copy number central sequence with strict symmetry and unusual chromatin structure in fission yeast centromere. , 1992, Molecular biology of the cell.

[70]  R. Moyzis,et al.  Highly conserved repetitive DNA sequences are present at human centromeres. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[71]  M. Gatti,et al.  Functional elements in Drosophila melanogaster heterochromatin. , 1992, Annual review of genetics.

[72]  A. Spradling,et al.  Reduced DNA polytenization of a minichromosome region undergoing position-effect variegation in Drosophila , 1990, Cell.

[73]  R. Devlin,et al.  Identifying a single-copy DNA sequence associated with the expression of a heterochromatic gene, the light locus of Drosophila melanogaster. , 1990, Genome.

[74]  G. Karpen,et al.  Drosophila ribosomal RNA genes function as an X-Y pairing site during male meiosis , 1990, Cell.

[75]  H. Willard,et al.  Centromeres of mammalian chromosomes. , 1990, Trends in genetics : TIG.

[76]  H. Willard,et al.  Patterns of intra- and interarray sequence variation in alpha satellite from the human X chromosome: evidence for short-range homogenization of tandemly repeated DNA sequences. , 1989, Genomics.

[77]  E. Jabs,et al.  Macromolecular organization of human centromeric regions reveals high-frequency, polymorphic macro DNA repeats. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[78]  E. Jabs,et al.  Characterization of human centromeric regions of specific chromosomes by means of alphoid DNA sequences. , 1987, American journal of human genetics.

[79]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[80]  H. Willard,et al.  Detection of restriction fragment length polymorphisms at the centromeres of human chromosomes by using chromosome-specific alpha satellite DNA probes: implications for development of centromere-based genetic linkage maps. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[81]  D. Brutlag,et al.  Multiplicity of satellite DNA sequences in Drosophila melanogaster. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[82]  G. Dover,et al.  Molecular drive: a cohesive mode of species evolution , 1982, Nature.